Victoria Kickham started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for DC Velocity.
Robotic technology has been sweeping through warehouses nationwide as companies seek to automate repetitive tasks in a bid to speed operations and free up human labor for other activities. Many of those implementations have been focused on picking tasks, a trend driven largely by the need to fill accelerating e-commerce orders. But as the robotic-picking market matures and e-commerce growth levels off, the robotic revolution is shifting behind the picking lines, with many companies investing in pallet-handling robots as a way to keep efficiency gains coming.
“Earlier in this decade and the previous decade, we [saw] a lot of [material handling] transformation around e-commerce and the handling of goods to order,” explains Josh Kivenko, chief marketing officer and senior vice president at Vecna Robotics, which provides autonomous mobile robots (AMRs) for pallet handling and logistics operations. “Now we’re talking about pallets—moving material in bulk behind that line.”
Kivenko explains that whether items are being packaged and shipped directly to a customer’s home address or moved as finished goods to a shipping bay for store delivery, those items are first moved in bulk in some way, often by human hands and with human-operated equipment. He describes warehouses as chaotic environments in which humans move pallets and cartons in multiple ways—up and down, side to side, from receiving to storage, from storage to shipping, or via cross-docking. Automation can help bring order to that chaos.
“What we’re trying to do is relieve some of the pressure [on the] humans [doing] this work,” Kivenko says of companies that develop pallet-handling robotic technologies. “At the end of the day, we’re trying to automate some of those flows, relieve labor pressure, save costs, and keep the goods flowing.”
But automated pallet handling isn’t right for every situation, so it’s important to understand the warehouse conditions required and the protocols and best practices needed to make it a win. Here are some guidelines for applying pallet-handling robots and gaining the most from your investment.
FIRST, UNDERSTAND THE TECHNOLOGY
Pallet-handling robots fall into four general categories, explains Rich O’Connor, vice president of storage and automation for Raymond West Group, a business unit of lift truck manufacturer The Raymond Corp. They include:
Palletizing/depalletizing robots, which are used to load or unload items onto and off of pallets, usually with the use of a robotic arm for picking and placing. Today, these systems are being increasingly integrated with automated storage and retrieval systems (AS/RS) to further streamline pallet handling in the warehouse, O’Connor explains.
Autonomous guided vehicles (AGVs) and autonomous mobile robots (AMRs), which are used to transport pallets within the warehouse. Often outfitted with lift decks or conveyors, or designed to tug or tow items, these robots move pallets from point A to B within a facility. AGVs, which often follow a marked guide-path or wire in the floor, have been around for many years, but the advent of high-performance guidance and vision systems is allowing them more flexibility today, O’Connor says. AMRs are self-guided vehicles that use software and sensors to navigate their way through the warehouse.
Forklift AGVs and AMRs, which can move products both horizontally, from place to place, and vertically, into and out of storage racks. They come in various styles—including stackers, counterbalanced trucks, reach trucks, and even very narrow aisle (VNA) vehicles for use in densely packed warehouses. These vehicles are more complex than those used only for horizontal transport, O’Connor explains. They must be “highly integrated” into the facility’s warehouse management system (WMS) or warehouse execution system (WES) so that they know precisely where to retrieve and deliver pallets within the facility.
Robotic pallet shuttles, which move pallets into, out of, and within dense storage racking. The Raymond Corp. describes such a system as “a standalone, automated deep-lane pallet storage system that utilizes self-powered shuttle carriages to move pallets toward the back or front in a racking channel. Shuttles are motor driven and travel along rails within a storage lane.”
O’Connor and others say that no matter which of these technologies you’re investing in, it’s important to remember that they are all part of a larger system designed to optimize operations throughout the warehouse.
“The expanding role of all these different styles working together is what’s amazing today,” O’Connor says.
SECOND, ENSURE THE TECHNOLOGY IS A FIT
Kivenko, of Vecna, also emphasizes the importance of pallet-handling robots working in concert, particularly AMRs and AGVs.
“The magic isn’t just that the robots are autonomous and driving by themselves. The magic is multiple robots—when you have a [whole integrated] system [in place],” he says. “[It’s] how the fleet operates autonomously and optimizes itself for continuous improvement. That’s where the exponential gains are. [It’s] not just about automating what a worker does; it’s about automating a system.”
But you can’t install these systems in just any warehouse and expect magic. Kivenko and others point to certain conditions that enable the best robotic pallet-handling outcomes, especially when it comes to transportation-based and forklift-type AMRs and AGVs.
“The robots that I sell are large-load machines with very expensive technology,” Kivenko explains. “They move material, generally, in larger facilities. And in order for them to produce a return [on investment]—because that’s the name of the game here—they have to be higher-velocity facilities.”
He says pallet-handling robots work best in large facilities running multiple shifts, usually more than five days a week. Wider aisles allow the equipment to move more freely through the facility and at higher speeds, to optimize efficiency and productivity. Strong Wi-Fi networks and clean, dry environments also help keep equipment running at top performance.
O’Connor agrees that pallet-handling robots are best suited to facilities with multishift operations, where they can ease labor constraints and boost productivity. And he says many customers are willing to extend the typical two- to three-year ROI period to five years in order to achieve those gains. But there is even more to it than that. O’Connor’s colleague John Rosenberger says customers must first step back and analyze their processes to ensure that, even if they have the right facility for pallet-handling AMRs or AGVs, they are moving material in the most efficient way to begin with.
“Many times, we find that the processes in place [are inefficient],” says Rosenberger, who is director of iWarehouse Gateway and global telematics for The Raymond Corp. He emphasizes the importance of analyzing existing data—from an equipment telematics system or similar—to determine the best path toward automation.
“Do you have congestion zones now?” he asks. “They’ll still exist if you automate [those processes exactly].”
THIRD, MAKE SIMPLICITY A PRIORITY
Another basic rule of thumb when implementing pallet-handling robotics: Keep it simple.
Andy Lockhart, director of strategic engagement for global warehouse and logistics process automation company Vanderlande, says that when designing a pallet-handling robotics system, “you want to minimize the processes you [automate]. When you can create [an automated system] that focuses on one task—for example, AMRs delivering pallets from a high-bay [storage rack] directly to the palletizing cell—you can do that efficiently and effectively. When you ask the AMR to do this and this and this … you are adding risk of failure.”
Lockhart’s colleague Jake Heldenberg advises customers to first test their target processes via pilot programs within the warehouse or DC. Heldenberg is Vanderlande’s head of solution design, warehousing, North America.
“If AGVs or AMRs for pallet handling are interesting [to a customer], the best thing to do is pilot one or two in an existing DC,” he says, explaining that the process can help companies troubleshoot, understand integration timelines, and gauge ROI. But pilot programs can add expense to a project, making it unaffordable for some.
“If that’s the case, then the best advice is work with a vendor who has experience integrating [the technology],” Heldenberg says. “Use their experience to benefit your business. You won’t have the same hiccups and challenges you would with a less-experienced vendor.”
Global forklift sales have slumped in 2024, falling short of initial forecasts as a result of the struggling economy in Europe and the slow release of project funding in the U.S., a report from market analyst firm Interact Analysis says.
In response, the London-based firm has reduced its shipment forecast for the year to rise just 0.3%, although it still predicts consistent growth of around 4-5% out to 2034.
The “bleak” figures come as the European economy has stagnated during the second half of 2024, with two of the leading industry sectors for forklifts - automotive and logistics – struggling. In addition, order backlogs from the pandemic have now been absorbed, so order volumes for the global forklift market will be slightly lower than shipment volumes over the next few years, Interact Analysis said.
On a more positive note, 3 million forklifts are forecast to be shipped per year by 2031 as enterprises are forced to reduce their dependence on manual labor. Interact Analysis has observed that major forklift OEMs are continuing with their long-term expansion plans, while other manufacturers that are affected by demand fluctuations are much more cautious with spending on automation projects.
At the same time, the forklift market is seeing a fundamental shift in power sources, with demand for Li-ion battery-powered forklifts showing a growth rate of over 10% while internal combustion engine (ICE) demand shrank by 1% and lead-acid battery-powered forklift fell 7%.
And according to Interact Analysis, those trends will continue, with the report predicting that ICE annual market demand will shrink over 20% from 670,000 units in 2024 to a projected 500,000 units by 2034. And by 2034, Interact Analysis predicts 81% of fully electric forklifts will be powered by li-ion batteries.
The reasons driving that shift include a move in Europe to cleaner alternatives to comply with environmental policies, and a swing in the primary customer base for forklifts from manufacturing to logistics and warehousing, due to the rise of e-commerce. Electric forklift demand is also growing in emerging markets, but for different reasons—labor costs are creating a growing need for automation in factories, especially in China, India, and Eastern Europe. And since lithium-ion battery production is primarily based in Asia, the average cost of equipping forklifts with li-ion batteries is much lower than the rest of the world.
The number of shipments of mobile robots will rise from 547,000 units in 2023 to 2.79 million by 2030, as customers expand applications from the current typical use case in warehousing and logistics to new tasks in manufacturing, last-mile delivery, agriculture, and healthcare, according to a report from technology analyst firm ABI.
That steep expansion would add up to a compound annual growth rate (CAGR) of 24.1% by units, and CAGR of 23.6% by revenue, as sales are forecasted to rise from $18 billion to $124 billion by 2030.
“Mobile robots are a very valuable category of robot which have completely transformed warehousing and logistics in recent years,” George Chowdhury, Robotics Industry Analyst at ABI Research, said in a release. “For material handling alone, mobile robots offer enterprises transformative efficiency improvements. Driven by the evolution of supporting technologies such as Simultaneous Localization and Mapping (SLAM), mobile robots can be deployed in diverse and dynamic environments, presenting new horizons to stakeholders and bringing efficiency improvements to under-automated economic sectors such as agriculture and healthcare.”
While warehousing and logistics will remain the primary adopters, other market verticals will see accelerated uptake by the decade's end, the report said. Shipments catering for agriculture deployments will rise from 7,000 to 129,000 per year by 2030; shipments for delivery will grow from 14,000 to 147,000; and public-facing applications will increase as the use of mobile robots within restaurants progress from 6,000 in 2023 to 78,000 shipments in 2030.
According to ABI, that change will occur as other industries begin to benefit from the decreasing costs, greater versatility, and simplified programmability that vendors are bringing to the mobile robot market. Sorted by market, those vendors include MiR, Omron, Otto Motors, and ABB for intralogistics within manufacturing; companies such as Zebra, Locus, and Safelog for marketing; Simbe and Brain Corp for retail; and Starship for last-mile delivery market.
“Mobile robots will remain the most popular form of robot, and shipments will continue to increase across economies as the benefits of augmenting existing business practices with automation become clear to decision-makers,” Chowdhury said. “As trust in Autonomous Mobile Robot (AMR) technologies grows, we will increasingly see mobile robots in public spaces. Hospitals, agriculture, retail stores, and last-mile delivery are all nearing readiness for the mass adoption of mobile robots.”
As the workhorse of the warehouse, the forklift typically gets all the tough jobs and none of the limelight. That finally changed recently, when a 46-year-old truck made headlines by winning the “Oldest Toyota Forklift Contest.”
The contest was organized by Intella Parts LLC, a Holland, Michigan-based supplier of aftermarket forklift parts for Toyota as well as other brands like Yale, Taylor, CAT, and Hyster lift trucks. This year’s winner was a 1978-vintage Toyota 42-3FGC20, a gas-powered forklift built in Toyota’s factory in Takahama-shi, Aichi, Japan. Alexander Toolsie of Burlington, Ontario, submitted the winning entry and was awarded a $100 gift certificate for Toyota forklift parts at Intella and a $100 Visa gift card.
The competition follows a similar contest held last year, when Intella launched a search for the oldest running Hyster forklift. The winner was a 1945 Hyster model that’s still in use at Public Steel in Amarillo, Texas.
According to Intella, the contests have been so popular that it plans to expand the competition to additional forklift brands next year.
Motion Industries Inc., a Birmingham, Alabama, distributor of maintenance, repair and operation (MRO) replacement parts and industrial technology solutions, has agreed to acquire International Conveyor and Rubber (ICR) for its seventh acquisition of the year, the firms said today.
ICR is a Blairsville, Pennsylvania-based company with 150 employees that offers sales, installation, repair, and maintenance of conveyor belts, as well as engineering and design services for custom solutions.
From its seven locations, ICR serves customers in the sectors of mining and aggregates, power generation, oil and gas, construction, steel, building materials manufacturing, package handling and distribution, wood/pulp/paper, cement and asphalt, recycling and marine terminals. In a statement, Kory Krinock, one of ICR’s owner-operators, said the deal would enhance the company’s services and customer value proposition while also contributing to Motion’s growth.
“ICR is highly complementary to Motion, adding seven strategic locations that expand our reach,” James Howe, president of Motion Industries, said in a release. “ICR introduces new customers and end markets, allowing us to broaden our offerings. We are thrilled to welcome the highly talented ICR employees to the Motion team, including Kory and the other owner-operators, who will continue to play an integral role in the business.”
Terms of the agreement were not disclosed. But the deal marks the latest expansion by Motion Industries, which has been on an acquisition roll during 2024, buying up: hydraulic provider Stoney Creek Hydraulics, industrial products distributor LSI Supply Inc., electrical and automation firm Allied Circuits, automotive supplier Motor Parts & Equipment Corporation (MPEC), and both Perfetto Manufacturing and SER Hydraulics.
German contract logistics provider DB Schenker has been operating remote-controlled forklifts at its warehouse facility Kassel, Germany, for nine months through a trial with the start-up firm enabl.
Drivers are connected to several different vehicles at different locations, and control the vehicles from a distance. That approach has the potential to increase efficiency and eliminate staff shortages by separating the driver from the forklift, the company said.
Following the results of the pilot period, DB Schenker recently signed a letter of intent committing to a long-term collaboration to scale enabl’s advanced remote control and automation technology for forklifts at several additional international locations.
Karlsruhe, Germany-based enabl raised $3.3 million in a pre-seed funding round earlier this year, saying its material handling-as-a-service business model provides customers with a flexible overall service for the intra-company transport of goods by automating partial process steps, even without full automation.
“The collaboration with enabl allows us to react flexibly to fluctuations in demand and automate our processes to increase productivity. We see this partnership as a valuable addition to our CL digitalization strategy, which will help us to secure our competitiveness in the long term,” Lucas Mömken, Vice President Global Engineering & Innovation in Contract Logistics, DB Schenker, said in a release.