Supply chain’s miracle workers: interview with Jim Cafone
In less than a year, Jim Cafone and his team at Pfizer created a whole new supply chain for the Covid vaccine. Now, with the development of a new antiviral pill, they’re looking to do it all over again.
Susan Lacefield has been working for supply chain publications since 1999. Before joining DC VELOCITY, she was an associate editor for Supply Chain Management Review and wrote for Logistics Management magazine. She holds a master's degree in English.
This story first appeared in the Quarter 1/2022 edition of CSCMP’s Supply Chain Quarterly, a journal of thought leadership for the supply chain management profession and a sister publication to AGiLE Business Media’s DC Velocity.
Imagine that your company is gearing up to launch a new product. First, take a moment to consider all the supply chain complexities inherent in any new-product introduction. Now imagine that you’ll be dealing with a product that’s based on brand-new technology, will require manufacturing processes unlike any your company has ever used, and will require a specialized temperature-controlled transportation and distribution network.
But wait, there’s more: Now imagine that the customer base for this product runs into the billions and is spread all over the world. And that these billions of customers are eagerly awaiting your new product—and closely scrutinizing your delivery performance.
And now, imagine that you have to design the supply chain for this product in less than a year.
JIM CAFONE
That was the challenge Jim Cafone and his team at the pharmaceutical giant Pfizer faced when they were tasked with creating the supply chain for the Covid-19 vaccine, in conjunction with Pfizer’s partner BioNTech.
Cafone, who is vice president of network design and performance for Pfizer Global Supply, says there was never any doubt that the company would accept this challenge. For Pfizer, one of the world’s largest vaccine manufacturers, unlocking a vaccine for Covid-19 and getting it to as many people as possible, as quickly as possible, felt like a moral imperative.
It quickly became apparent that one of the most promising ways to defeat the virus lay with the new messenger RNA (mRNA) technology that was being developed by BioNTech, a biotechnology company. That led Pfizer to form a partnership with BioNTech to produce the vaccine. But there was a hitch: At the time, Pfizer had an extensive manufacturing and distribution network for vaccines and pharmaceuticals, but none of it was designed for mRNA-based products. A whole new process and network would have to be created essentially from scratch—and with the virus sweeping across the globe, there was no time to lose.
In this interview with DC Velocity Editor at Large Susan Lacefield, Cafone talks about how his team rallied to meet that unprecedented challenge, which required them to change the very way that they worked.
Q: Did Pfizer have any previous experiences you could draw upon when developing the supply chain for the Covid-19 vaccine?
A: As one of the largest vaccine manufacturers, we of course had experience with building out supply chains, but not at the same scale. Nobody builds a manufacturing network for a pandemic. In a world with a population of 7.6 billion to 7.8 billion people, you are talking about a need that has never [arisen] before.
Up until Covid, the No. 1 vaccine in the world was a product called Prevnar [which is used to prevent diseases caused by the pneumococcal bacteria], and in 2019, we manufactured roughly 200 million doses of that.
But Prevnar uses a different sort of technology than the Covid vaccine. We were discussing whether to use what I would classify as “tried and true” traditional vaccine technology or move to the mRNA platform. We chose the mRNA platform due to the confidence we had in our partner.
Q: What sorts of challenges did the move to mRNA technology create?
A: In my view, there were three major challenges. One was building out an mRNA manufacturing supply chain that had not previously existed anywhere in the world. There just wasn’t enough equipment in the world [to meet our needs] if we used standard approaches. The type of scale that we needed just didn’t exist. So we had to fundamentally reinvent the manufacturing process, which included not only making the mRNA but also filling and finishing vials.
Challenge number two was building out a network of innovative collaborators. We have roughly 280 components coming in from 85 suppliers in 19 different countries, and we had to build out a network using these collaborators.
The third thing was the whole logistics side, which [included] building a shipment device that could handle deep-frozen vaccines. mRNA doesn’t like heat at all. So we optimized [our supply chain] on speed, and we optimized on deep-frozen.
So those were the three big challenges: reinventing the manufacturing process, developing a brand-new manufacturing network with a lot of innovative players, and reinventing deep-frozen distribution on a global scale.
Q: That global piece has got to be really difficult, because it’s one thing to keep product frozen in, say, the United States or Europe, but another thing altogether when you’re distributing in remote parts of Africa or Asia.
A: Exactly. The shipping container we designed was meant to double as a portable storage device. It wasn’t a situation where you had to immediately open it up upon receipt. We designed it so that it kept temperatures consistent up to, I want to say, about 10 days.
We wanted it to be easy and efficient to pack. We needed a product to be stable for up to 10 days in remote locations, and we wanted it to be [able to be] returned or reused. So that was like another medical innovation.
All during that time, we took 50% out of our cycle time for manufacture. We expanded wherever we could in our network to get more volume. We put $2 billion worth of capital at risk in order to optimize its speed. In 2021, we manufactured 3 billion doses, and 1 billion of those went to low- and middle-income countries. Our focus was on health-care equity regardless of where you were in the world.
Q: Another thing Pfizer did was to redesign the manufacturing process to be very “micro.” How did you accomplish that?
A: [Even before Covid,] the entire manufacturing process had been getting what I would call “miniaturized.” That miniaturization is based on the fact that, as the industry starts to attack more rare diseases, you don’t need big manufacturing infrastructures anymore. You need small, nimble manufacturing infrastructures.
What was interesting with the Covid vaccine is that we needed massive scale, but we couldn’t find 6-, 12-, or 20-thousand-liter vessels at that time to produce this mass volume. They just didn’t exist anywhere in the world. Again, you’re talking about a patient population of potentially 8 billion people. So we decided to take a page out of both books and look at how do we miniaturize, and, instead of scaling up, how do we scale out.
The answer is basically a miniaturized manufacturing plant. What we did was to design those [miniaturized plants] so that you could start to create racks of them. Almost like you see in a data center: If you go into a data center, you might see a rack of 10 servers, but if you go into an Amazon data center, you might see thousands of feet of servers, right? As you add [servers], you are adding computer power. As we were scaling out [our miniaturized plants], we were adding in volume. We redesigned the entire process to be like a “factory in a box,” and then you could start to replicate those in a way that is fundamentally equivalent to server arrays in a data center. That is how we largely did it.
Q: In the midst of all that, how did you build a network of suppliers to collaborate with you on a very new technology?
A: The genetic sequence for the SARS virus was updated on Jan. 12, 2020. That was when BioNTech approached us with their mRNA Covid technology. The way that I describe it is, it was a great marriage. They had great science. We had the best development organization and, I would argue, the best supply chain organization. Now, I’m biased, of course.
Once we decided to go with mRNA technology, we approached our suppliers that were in the mRNA space as rapidly as possible. The challenge we had was that mRNA was largely an academic exercise—a medical school exercise—at that time. Suppliers were really great at supplying those [researchers], but they were supplying relatively small amounts. Then we were calling up and saying, “Hey, we need plasmids, or capping agents, or some of the other materials. Can you send us some of this material?” They would then ask us how many liters we would need, and we were saying, “No. No. No. We need tens of thousands of liters.”
We worked exceptionally closely with all of our suppliers in an open, innovative fashion in order to get the volume. In some cases, when we couldn’t get the volume by helping them troubleshoot, we brought the volume into our [own manufacturing] network.
Q: Do you think the pandemic-induced crisis made that collaboration with external partners a little easier?
A: I definitely think there was a different sense of purpose. Now, of course, every pharmaceutical is important to some patient out there, but this one had an even larger sense of purpose. I also think our suppliers saw that sense of purpose in our light-speed culture, which grew pretty rapidly. It was all about speed. It was all about innovation. It was all about breaking down bureaucracies. It wasn’t about governance and meetings and PowerPoints anymore. It was all about the breakthrough mindset.
It was an interesting cultural element because my team designed the network during meetings that I wasn’t in. I was perfectly happy not being in them, because people were accountable for getting the work done. I never was on a call where there were more than maybe a dozen people at the meeting. If you were at the session, you were there for a purpose. You weren’t just there to listen.
You know, we have all been on conference calls in our careers where, unfortunately, you jump on and there are 50 people on there, and 30 are trying to get a word in. Again, it was all about speed, agility, innovation, and a breakthrough mindset, which means by default, you have to feel comfortable not being a part of everything. Let the organization as a whole do its work.
Q: And now Pfizer is starting to ramp up distribution for the Paxlovid antiviral pill. How is that different from your vaccine-distribution efforts?
A: Fundamentally, we are doing it all over again. The challenge you have is the volume, because now you are not dealing in biological processes; you are dealing in physical chemistry processes. What we are working through now is basically how quickly we can ramp up once again.
To put it in perspective, the highest volume of pharmaceuticals we ever produced was for Lipitor, the cholesterol-lowering agent, in 2010. It was one of its final years of patent protection, and we manufactured 250 metric tons of active pharmaceutical agents. That is the largest drug we have ever produced by volume. For Paxlovid, this year we need to produce 500 metric tons, so two [times as much as we did with] Lipitor. By the way, that Lipitor [production volume] that I talked about was during year eight or nine of its life cycle.
Q: Right, so you had already figured it all out.
A: We’d figured it all out, and we had seven generations of process improvement [under our belts]. With [Paxlovid], we’ve got to produce 500 metric tons, and we need to do that within the first year of launch. We are assembling a network of active pharmaceutical ingredient suppliers from all over the globe, including our own assets from product tableting operations and packaging operations. Again, [we’re doing] everything we can do for speed and agility.
Q: One last question: How do you keep your team from burning out?
A: We are fortunate. Pfizer has helped everyone, with all sorts of tools, to take a break. We have been focusing on doing everything we can to get people to [attain] a proper work/life balance in this difficult time. We have been focusing on mindfulness. We have been focusing on taking the right breaks at the right time.
The problem we have, fundamentally, is that people want to solve these problems. We didn’t have any issues with getting people into our manufacturing plants. We have people who wanted to come in because, even if they aren’t making the [Covid] vaccine or Paxlovid, they’re still making a lot of medicines that people need. We actually have trouble getting people to stop working and to feel OK with taking a break. It’s clear that our people have a commitment to Pfizer’s purpose:“Breakthroughs that change patients’ lives.”
Editor’s Note: For more on how Pfizer tackled the cold-chain challenges it encountered in distributing its mRNA vaccine, see “The vaccine that came in from the cold,” by Yossi Sheffi, in the Q1 2022 issue ofDC Velocity’ssister publication,CSCMP’s Supply Chain Quarterly.
“The past year has been unprecedented, with extreme weather events, heightened geopolitical tension and cybercrime destabilizing supply chains throughout the world. Navigating this year’s looming risks to build a secure supply network has never been more critical,” Corey Rhodes, CEO of Everstream Analytics, said in the firm’s “2025 Annual Risk Report.”
“While some risks are unavoidable, early notice and swift action through a combination of planning, deep monitoring, and mitigation can save inventory and lives in 2025,” Rhodes said.
In its report, Everstream ranked the five categories by a “risk score metric” to help global supply chain leaders prioritize planning and mitigation efforts for coping with them. They include:
Drowning in Climate Change – 90% Risk Score. Driven by shifting climate patterns and record-high temperatures, extreme weather events are a dominant risk to the supply chain due to concerns such as flooding and elevated ocean temperatures.
Geopolitical Instability with Increased Tariff Risk – 80% Risk Score. These threats could disrupt trade networks and impact economies worldwide, including logistics, transportation, and manufacturing industries. The following major geopolitical events are likely to impact global trade: Red Sea disruptions, Russia-Ukraine conflict, Taiwan trade risks, Middle East tensions, South China Sea disputes, and proposed tariff increases.
More Backdoors for Cybercrime – 75% Risk Score. Supply chain leaders face escalating cybersecurity risks in 2025, driven by the growing reliance on AI and cloud computing within supply chains, the proliferation of IoT-connected devices, vulnerabilities in sub-tier supply chains, and a disproportionate impact on third-party logistics providers (3PLs) and the electronics industry.
Rare Metals and Minerals on Lockdown – 65% Risk Score. Between rising regulations, new tariffs, and long-term or exclusive contracts, rare minerals and metals will be harder than ever, and more expensive, to obtain.
Crackdown on Forced Labor – 60% Risk Score. A growing crackdown on forced labor across industries will increase pressure on companies who are facing scrutiny to manage and eliminate suppliers violating human rights. Anticipated risks in 2025 include a push for alternative suppliers, a cascade of legislation to address lax forced labor issues, challenges for agri-food products such as palm oil and vanilla.
That number is low compared to widespread unemployment in the transportation sector which reached its highest level during the COVID-19 pandemic at 15.7% in both May 2020 and July 2020. But it is slightly above the most recent pre-pandemic rate for the sector, which was 2.8% in December 2019, the BTS said.
For broader context, the nation’s overall unemployment rate for all sectors rose slightly in December, increasing 0.3 percentage points from December 2023 to 3.8%.
On a seasonally adjusted basis, employment in the transportation and warehousing sector rose to 6,630,200 people in December 2024 — up 0.1% from the previous month and up 1.7% from December 2023. Employment in transportation and warehousing grew 15.1% in December 2024 from the pre-pandemic December 2019 level of 5,760,300 people.
The largest portion of those workers was in warehousing and storage, followed by truck transportation, according to a breakout of the total figures into separate modes (seasonally adjusted):
Warehousing and storage rose to 1,770,300 in December 2024 — up 0.1% from the previous month and up 0.2% from December 2023.
Truck transportation fell to 1,545,900 in December 2024 — down 0.1% from the previous month and down 0.4% from December 2023.
Air transportation rose to 578,000 in December 2024 — up 0.4% from the previous month and up 1.4% from December 2023.
Transit and ground passenger transportation rose to 456,000 in December 2024 — up 0.3% from the previous month and up 5.7% from December 2023.
Rail transportation remained virtually unchanged in December 2024 at 150,300 from the previous month but down 1.8% from December 2023.
Water transportation rose to 74,300 in December 2024 — up 0.1% from the previous month and up 4.8% from December 2023.
Pipeline transportation rose to 55,000 in December 2024 — up 0.5% from the previous month and up 6.2% from December 2023.
Parcel carrier and logistics provider UPS Inc. has acquired the German company Frigo-Trans and its sister company BPL, which provide complex healthcare logistics solutions across Europe, the Atlanta-based firm said this week.
According to UPS, the move extends its UPS Healthcare division’s ability to offer end-to-end capabilities for its customers, who increasingly need temperature-controlled and time-critical logistics solutions globally.
UPS Healthcare has 17 million square feet of cGMP and GDP-compliant healthcare distribution space globally, supporting services such as inventory management, cold chain packaging and shipping, storage and fulfillment of medical devices, and lab and clinical trial logistics.
More specifically, UPS Healthcare said that the acquisitions align with its broader mission to provide end-to-end logistics for temperature-sensitive healthcare products, including biologics, specialty pharmaceuticals, and personalized medicine. With 80% of pharmaceutical products in Europe requiring temperature-controlled transportation, investments like these ensure UPS Healthcare remains at the forefront of innovation in the $82 billion complex healthcare logistics market, the company said.
Additionally, Frigo-Trans' presence in Germany—the world's fourth-largest healthcare manufacturing market—strengthens UPS's foothold and enhances its support for critical intra-Germany operations. Frigo-Trans’ network includes temperature-controlled warehousing ranging from cryopreservation (-196°C) to ambient (+15° to +25°C) as well as Pan-European cold chain transportation. And BPL provides logistics solutions including time-critical freight forwarding capabilities.
Terms of the deal were not disclosed. But it fits into UPS' long term strategy to double its healthcare revenue from $10 billion in 2023 to $20 billion by 2026. To get there, it has also made previous acquisitions of companies like Bomi and MNX. And UPS recently expanded its temperature-controlled fleet in France, Italy, the Netherlands, and Hungary.
"Healthcare customers increasingly demand precision, reliability, and adaptability—qualities that are critical for the future of biologics and personalized medicine. The Frigo-Trans and BPL acquisitions allow us to offer unmatched service across Europe, making logistics a competitive advantage for our pharma partners," says John Bolla, President, UPS Healthcare.
The supply chain risk management firm Overhaul has landed $55 million in backing, saying the financing will fuel its advancements in artificial intelligence and support its strategic acquisition roadmap.
The equity funding round comes from the private equity firm Springcoast Partners, with follow-on participation from existing investors Edison Partners and Americo. As part of the investment, Springcoast’s Chris Dederick and Holger Staude will join Overhaul’s board of directors.
According to Austin, Texas-based Overhaul, the money comes as macroeconomic and global trade dynamics are driving consequential transformations in supply chains. That makes cargo visibility and proactive risk management essential tools as shippers manage new routes and suppliers.
“The supply chain technology space will see significant consolidation over the next 12 to 24 months,” Barry Conlon, CEO of Overhaul, said in a release. “Overhaul is well-positioned to establish itself as the ultimate integrated solution, delivering a comprehensive suite of tools for supply chain risk management, efficiency, and visibility under a single trusted platform.”
Shippers today are praising an 11th-hour contract agreement that has averted the threat of a strike by dockworkers at East and Gulf coast ports that could have frozen container imports and exports as soon as January 16.
The agreement came late last night between the International Longshoremen’s Association (ILA) representing some 45,000 workers and the United States Maritime Alliance (USMX) that includes the operators of port facilities up and down the coast.
Details of the new agreement on those issues have not yet been made public, but in the meantime, retailers and manufacturers are heaving sighs of relief that trade flows will continue.
“Providing certainty with a new contract and avoiding further disruptions is paramount to ensure retail goods arrive in a timely manner for consumers. The agreement will also pave the way for much-needed modernization efforts, which are essential for future growth at these ports and the overall resiliency of our nation’s supply chain,” Gold said.
The next step in the process is for both sides to ratify the tentative agreement, so negotiators have agreed to keep those details private in the meantime, according to identical statements released by the ILA and the USMX. In their joint statement, the groups called the six-year deal a “win-win,” saying: “This agreement protects current ILA jobs and establishes a framework for implementing technologies that will create more jobs while modernizing East and Gulf coasts ports – making them safer and more efficient, and creating the capacity they need to keep our supply chains strong. This is a win-win agreement that creates ILA jobs, supports American consumers and businesses, and keeps the American economy the key hub of the global marketplace.”
The breakthrough hints at broader supply chain trends, which will focus on the tension between operational efficiency and workforce job protection, not just at ports but across other sectors as well, according to a statement from Judah Levine, head of research at Freightos, a freight booking and payment platform. Port automation was the major sticking point leading up to this agreement, as the USMX pushed for technologies to make ports more efficient, while the ILA opposed automation or semi-automation that could threaten jobs.
"This is a six-year détente in the tech-versus-labor tug-of-war at U.S. ports," Levine said. “Automation remains a lightning rod—and likely one we’ll see in other industries—but this deal suggests a cautious path forward."
Editor's note: This story was revised on January 9 to include additional input from the ILA, USMX, and Freightos.