Port operations are increasingly looking to reduce their carbon emissions. Switching to battery-electric technology for cargo handling equipment can help—and developments are underway.
Victoria Kickham started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for DC Velocity.
Battery-electric vehicle technology is front and center in the race to create greener supply chains, with many companies investigating ways to reduce their reliance on diesel-powered trucks and material handling equipment in favor of lower- or zero-emission options.
Port operations are no exception, but efforts to electrify the heavy-duty equipment used in those environments are still in the early stages, with some industry-watchers saying the tipping point for adopting battery-electric port equipment is still years away. That’s largely due to the high cost of electrified container handling equipment (CHE), which is used to load and unload containers onto and off of ships—examples include large vehicles called straddle carriers, terminal tractors, and reach stackers. The total cost of ownership for battery-electric versions of that equipment is roughly 1.3 times higher than that of diesel-powered CHE, according to data from Netherlands-based port operating company APM Terminals and Dubai-based cargo logistics company DP World. Until those costs come down, battery-electric CHE is likely to remain a small portion of the equipment operating at ports around the world. In fact, battery-electric equipment is just beginning to be deployed, according to the APM and DP World data, which was published in a white paper last October.
But research and testing are underway. Forklift and material handling equipment manufacturer Hyster is one company at the forefront of those efforts. Hyster is involved in pilot programs with its own zero-emission equipment at ports around the world, including a partnership to provide APM Terminals with 10 battery-electric terminal tractors for APM’s location at the Port of Mobile, Alabama. The manufacturer is also working with the Port of Valencia, Spain, to use Hyster’s hydrogen fuel cell (HFC) reach stacker—another alternative to diesel-powered equipment—for port operations. The Valencia project is part of Europe’s H2Ports initiative, a European Union-funded project that aims to implement fuel cells and other zero-emission technologies at ports.
We asked Herman Klaus, Hyster’s director of application solutions, to weigh in on the trend toward battery-electric port equipment and discuss Hyster’s efforts to help create more sustainable port operations. Here are some excerpts from our conversation.
DC Velocity: Demand for zero-emission material handling equipment continues to rise. How is the trend evolving at ports? How much demand are you seeing for technologies that replace traditional diesel-powered equipment?
Herman Klaus: There is tremendous interest in electric machines in the market as the decarbonization targets in our industry are widely set. We see a lot of interest in our zero-emission portfolio, stretching from our battery-electric products [a wide range of forklifts, including port equipment] as well as our hydrogen fuel cell-powered container handling equipment. We have been able to deploy battery-electric [heavy-duty] forklifts in the field, where several customers had the ability to trial the equipment. Currently, we have two container handlers in operation with a hydrogen fuel cell-electric drive line. Apart from bringing interested customers to these sites, we are also heavily engaging with customers around the world by sharing our technology roadmap and discussing collaboration possibilities.
DCV: What are the main considerations when deciding whether or not to implement electric port equipment?
Klaus: When exploring electric options, it’s important to get a complete operational profile to guide decision-making. The right electrification choice will always depend on the particular needs of the operation, such as the demands and intensity of the operation. There will also be factors dictated by the charging/refueling infrastructure and working patterns. For instance, is opportunity charging possible? … There are also geographical considerations—certain energy options [for example, electricity and hydrogen] are more affordable in some countries than others.
Cost is another factor. The price of solutions will vary based on the equipment type, power source, charging or refueling infrastructure, and other factors. There is currently a significant cost differential between container handling equipment fueled with diesel and alternatives powered by electricity, but as more electric equipment enters the market, economies of scale will help to drive parity. It’s also important to remember that the initial acquisition price is only one piece of the total cost of ownership, and electric equipment can help reduce certain operating and maintenance expenses. For example, electric drivetrains have fewer components and less complexity than ICE [internal combustion engine equipment], which can help reduce the downtime and cost associated with maintenance.
It’s also worth noting the maintenance element, as electric container handlers are categorized as high-voltage equipment, and there are important safety standards operations must understand and comply with to prevent electrical danger or injury.
DCV: How do you handle the charging process for electric vehicles in these environments? How is it different from charging done inside warehouses and distribution centers?
Klaus: Major considerations on this subject include the frequency with which equipment must be refueled/recharged and infrastructure requirements. These are similar questions to what operations with lower-capacity equipment used in distribution centers often consider. For example, warehouses and DCs must schedule charging to fit their productivity requirements and must also consider onsite charging and the ability of the local grid to provide sufficient energy.
First, frequency: Zero-emission options are being designed to provide enough capacity to keep operations moving and avoid the need to stop in the middle of a shift to recharge or, in the case of hydrogen fuel cells (HFC), refuel. But the required time and frequency of recharging or refueling are very important considerations. For large HFC-powered equipment, a rough ballpark figure is that it can take about 15 minutes to fill an empty tank, enough for up to eight to 10 hours of continuous runtime. A lithium-ion battery-powered top pick [a type of cargo handler] capable of opportunity charging, for instance, could have enough power onboard to complete a full eight-hour shift before needing to be charged.
As [for] the local electric grid handling the energy draw of port equipment: The answer depends on the grid stability and capacity in the local area and the fleet size. Charging heavy-duty electric equipment like this does demand a significant energy draw, so it is important to work with a partner who can help understand power requirements, evaluate charging strategies such as staggered or overnight charging when there is a lower burden on the grid, and speak with your local utility provider. It’s also important to note that not all electric equipment is dependent on electricity from the grid. HFC-powered equipment can be a strong option where the local grid is not reliable.
In terms of what operations need onsite in order to charge or fuel equipment: Apart from the container handling equipment, operations will need a charger for battery-electric equipment or hydrogen fueling stations and possibly storage—depending on your hydrogen sourcing strategy—for HFC-powered equipment.
DCV: Can you tell us a bit more about the recent deployments of Hyster’s battery-electric and hydrogen fuel cell port equipment?
Klaus: [Our] hydrogen fuel cell-powered reach stacker [a vehicle that can move containers around ports] at the Port of Valencia has successfully transitioned to real-world operation, marking the official launch of the piloting phase for the [European Union’s] H2Ports project.
It’s important to acknowledge that integrating any new technology requires a period of adjustment. Compared to a standard diesel truck, this initial startup phase requires added input and effort for both the reach stacker itself and the supporting hydrogen infrastructure.
Maintaining operational flexibility is also crucial during this pilot. We may encounter unforeseen challenges, such as temporary fluctuations in hydrogen supply or requirements for specialized parts. However, we’re committed to working collaboratively to address any such issues in a timely and professional manner.
The core objective of this project is to demonstrate the viability of hydrogen fuel cell technology in real-world port operations. Over a minimum two-year period, the reach stacker will be put through its paces, accumulating more than 5,000 operating hours. This data will be instrumental in proving that fuel cell reach stackers are a realistic and reliable option for the future of sustainable port operations.
We also have a special test agreement with APM Terminals in Mobile, Alabama, to deliver … 10 battery-electric terminal tractors [vehicles that move containers within a cargo yard or similar facility]. Hyster is onsite to provide support for these machines. We have a dedicated support team, solely to support our zero-emission port equipment projects around the globe.
Container traffic is finally back to typical levels at the port of Montreal, two months after dockworkers returned to work following a strike, port officials said Thursday.
Today that arbitration continues as the two sides work to forge a new contract. And port leaders with the Maritime Employers Association (MEA) are reminding workers represented by the Canadian Union of Public Employees (CUPE) that the CIRB decision “rules out any pressure tactics affecting operations until the next collective agreement expires.”
The Port of Montreal alone said it had to manage a backlog of about 13,350 twenty-foot equivalent units (TEUs) on the ground, as well as 28,000 feet of freight cars headed for export.
Port leaders this week said they had now completed that task. “Two months after operations fully resumed at the Port of Montreal, as directed by the Canada Industrial Relations Board, the Montreal Port Authority (MPA) is pleased to announce that all port activities are now completely back to normal. Both the impact of the labour dispute and the subsequent resumption of activities required concerted efforts on the part of all port partners to get things back to normal as quickly as possible, even over the holiday season,” the port said in a release.
The “2024 Year in Review” report lists the various transportation delays, freight volume restrictions, and infrastructure repair costs of a long string of events. Those disruptions include labor strikes at Canadian ports and postal sites, the U.S. East and Gulf coast port strike; hurricanes Helene, Francine, and Milton; the Francis Scott key Bridge collapse in Baltimore Harbor; the CrowdStrike cyber attack; and Red Sea missile attacks on passing cargo ships.
“While 2024 was characterized by frequent and overlapping disruptions that exposed many supply chain vulnerabilities, it was also a year of resilience,” the Project44 report said. “From labor strikes and natural disasters to geopolitical tensions, each event served as a critical learning opportunity, underscoring the necessity for robust contingency planning, effective labor relations, and durable infrastructure. As supply chains continue to evolve, the lessons learned this past year highlight the increased importance of proactive measures and collaborative efforts. These strategies are essential to fostering stability and adaptability in a world where unpredictability is becoming the norm.”
In addition to tallying the supply chain impact of those events, the report also made four broad predictions for trends in 2025 that may affect logistics operations. In Project44’s analysis, they include:
More technology and automation will be introduced into supply chains, particularly ports. This will help make operations more efficient but also increase the risk of cybersecurity attacks and service interruptions due to glitches and bugs. This could also add tensions among the labor pool and unions, who do not want jobs to be replaced with automation.
The new administration in the United States introduces a lot of uncertainty, with talks of major tariffs for numerous countries as well as talks of US freight getting preferential treatment through the Panama Canal. If these things do come to fruition, expect to see shifts in global trade patterns and sourcing.
Natural disasters will continue to become more frequent and more severe, as exhibited by the wildfires in Los Angeles and the winter storms throughout the southern states in the U.S. As a result, expect companies to invest more heavily in sustainability to mitigate climate change.
The peace treaty announced on Wednesday between Isael and Hamas in the Middle East could support increased freight volumes returning to the Suez Canal as political crisis in the area are resolved.
The French transportation visibility provider Shippeo today said it has raised $30 million in financial backing, saying the money will support its accelerated expansion across North America and APAC, while driving enhancements to its “Real-Time Transportation Visibility Platform” product.
The funding round was led by Woven Capital, Toyota’s growth fund, with participation from existing investors: Battery Ventures, Partech, NGP Capital, Bpifrance Digital Venture, LFX Venture Partners, Shift4Good and Yamaha Motor Ventures. With this round, Shippeo’s total funding exceeds $140 million.
Shippeo says it offers real-time shipment tracking across all transport modes, helping companies create sustainable, resilient supply chains. Its platform enables users to reduce logistics-related carbon emissions by making informed trade-offs between modes and carriers based on carbon footprint data.
"Global supply chains are facing unprecedented complexity, and real-time transport visibility is essential for building resilience” Prashant Bothra, Principal at Woven Capital, who is joining the Shippeo board, said in a release. “Shippeo’s platform empowers businesses to proactively address disruptions by transforming fragmented operations into streamlined, data-driven processes across all transport modes, offering precise tracking and predictive ETAs at scale—capabilities that would be resource-intensive to develop in-house. We are excited to support Shippeo’s journey to accelerate digitization while enhancing cost efficiency, planning accuracy, and customer experience across the supply chain.”
Donald Trump has been clear that he plans to hit the ground running after his inauguration on January 20, launching ambitious plans that could have significant repercussions for global supply chains.
As Mark Baxa, CSCMP president and CEO, says in the executive forward to the white paper, the incoming Trump Administration and a majority Republican congress are “poised to reshape trade policies, regulatory frameworks, and the very fabric of how we approach global commerce.”
The paper is written by import/export expert Thomas Cook, managing director for Blue Tiger International, a U.S.-based supply chain management consulting company that focuses on international trade. Cook is the former CEO of American River International in New York and Apex Global Logistics Supply Chain Operation in Los Angeles and has written 19 books on global trade.
In the paper, Cook, of course, takes a close look at tariff implications and new trade deals, emphasizing that Trump will seek revisions that will favor U.S. businesses and encourage manufacturing to return to the U.S. The paper, however, also looks beyond global trade to addresses topics such as Trump’s tougher stance on immigration and the possibility of mass deportations, greater support of Israel in the Middle East, proposals for increased energy production and mining, and intent to end the war in the Ukraine.
In general, Cook believes that many of the administration’s new policies will be beneficial to the overall economy. He does warn, however, that some policies will be disruptive and add risk and cost to global supply chains.
In light of those risks and possible disruptions, Cook’s paper offers 14 recommendations. Some of which include:
Create a team responsible for studying the changes Trump will introduce when he takes office;
Attend trade shows and make connections with vendors, suppliers, and service providers who can help you navigate those changes;
Consider becoming C-TPAT (Customs-Trade Partnership Against Terrorism) certified to help mitigate potential import/export issues;
Adopt a risk management mindset and shift from focusing on lowest cost to best value for your spend;
Increase collaboration with internal and external partners;
Expect warehousing costs to rise in the short term as companies look to bring in foreign-made goods ahead of tariffs;
Expect greater scrutiny from U.S. Customs and Border Patrol of origin statements for imports in recognition of attempts by some Chinese manufacturers to evade U.S. import policies;
Reduce dependency on China for sourcing; and
Consider manufacturing and/or sourcing in the United States.
Cook advises readers to expect a loosening up of regulations and a reduction in government under Trump. He warns that while some world leaders will look to work with Trump, others will take more of a defiant stance. As a result, companies should expect to see retaliatory tariffs and duties on exports.
Cook concludes by offering advice to the incoming administration, including being sensitive to the effect retaliatory tariffs can have on American exports, working on federal debt reduction, and considering promoting free trade zones. He also proposes an ambitious water works program through the Army Corps of Engineers.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.