Port operations are increasingly looking to reduce their carbon emissions. Switching to battery-electric technology for cargo handling equipment can help—and developments are underway.
Victoria Kickham started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for DC Velocity.
Battery-electric vehicle technology is front and center in the race to create greener supply chains, with many companies investigating ways to reduce their reliance on diesel-powered trucks and material handling equipment in favor of lower- or zero-emission options.
Port operations are no exception, but efforts to electrify the heavy-duty equipment used in those environments are still in the early stages, with some industry-watchers saying the tipping point for adopting battery-electric port equipment is still years away. That’s largely due to the high cost of electrified container handling equipment (CHE), which is used to load and unload containers onto and off of ships—examples include large vehicles called straddle carriers, terminal tractors, and reach stackers. The total cost of ownership for battery-electric versions of that equipment is roughly 1.3 times higher than that of diesel-powered CHE, according to data from Netherlands-based port operating company APM Terminals and Dubai-based cargo logistics company DP World. Until those costs come down, battery-electric CHE is likely to remain a small portion of the equipment operating at ports around the world. In fact, battery-electric equipment is just beginning to be deployed, according to the APM and DP World data, which was published in a white paper last October.
But research and testing are underway. Forklift and material handling equipment manufacturer Hyster is one company at the forefront of those efforts. Hyster is involved in pilot programs with its own zero-emission equipment at ports around the world, including a partnership to provide APM Terminals with 10 battery-electric terminal tractors for APM’s location at the Port of Mobile, Alabama. The manufacturer is also working with the Port of Valencia, Spain, to use Hyster’s hydrogen fuel cell (HFC) reach stacker—another alternative to diesel-powered equipment—for port operations. The Valencia project is part of Europe’s H2Ports initiative, a European Union-funded project that aims to implement fuel cells and other zero-emission technologies at ports.
We asked Herman Klaus, Hyster’s director of application solutions, to weigh in on the trend toward battery-electric port equipment and discuss Hyster’s efforts to help create more sustainable port operations. Here are some excerpts from our conversation.
DC Velocity: Demand for zero-emission material handling equipment continues to rise. How is the trend evolving at ports? How much demand are you seeing for technologies that replace traditional diesel-powered equipment?
Herman Klaus: There is tremendous interest in electric machines in the market as the decarbonization targets in our industry are widely set. We see a lot of interest in our zero-emission portfolio, stretching from our battery-electric products [a wide range of forklifts, including port equipment] as well as our hydrogen fuel cell-powered container handling equipment. We have been able to deploy battery-electric [heavy-duty] forklifts in the field, where several customers had the ability to trial the equipment. Currently, we have two container handlers in operation with a hydrogen fuel cell-electric drive line. Apart from bringing interested customers to these sites, we are also heavily engaging with customers around the world by sharing our technology roadmap and discussing collaboration possibilities.
DCV: What are the main considerations when deciding whether or not to implement electric port equipment?
Klaus: When exploring electric options, it’s important to get a complete operational profile to guide decision-making. The right electrification choice will always depend on the particular needs of the operation, such as the demands and intensity of the operation. There will also be factors dictated by the charging/refueling infrastructure and working patterns. For instance, is opportunity charging possible? … There are also geographical considerations—certain energy options [for example, electricity and hydrogen] are more affordable in some countries than others.
Cost is another factor. The price of solutions will vary based on the equipment type, power source, charging or refueling infrastructure, and other factors. There is currently a significant cost differential between container handling equipment fueled with diesel and alternatives powered by electricity, but as more electric equipment enters the market, economies of scale will help to drive parity. It’s also important to remember that the initial acquisition price is only one piece of the total cost of ownership, and electric equipment can help reduce certain operating and maintenance expenses. For example, electric drivetrains have fewer components and less complexity than ICE [internal combustion engine equipment], which can help reduce the downtime and cost associated with maintenance.
It’s also worth noting the maintenance element, as electric container handlers are categorized as high-voltage equipment, and there are important safety standards operations must understand and comply with to prevent electrical danger or injury.
DCV: How do you handle the charging process for electric vehicles in these environments? How is it different from charging done inside warehouses and distribution centers?
Klaus: Major considerations on this subject include the frequency with which equipment must be refueled/recharged and infrastructure requirements. These are similar questions to what operations with lower-capacity equipment used in distribution centers often consider. For example, warehouses and DCs must schedule charging to fit their productivity requirements and must also consider onsite charging and the ability of the local grid to provide sufficient energy.
First, frequency: Zero-emission options are being designed to provide enough capacity to keep operations moving and avoid the need to stop in the middle of a shift to recharge or, in the case of hydrogen fuel cells (HFC), refuel. But the required time and frequency of recharging or refueling are very important considerations. For large HFC-powered equipment, a rough ballpark figure is that it can take about 15 minutes to fill an empty tank, enough for up to eight to 10 hours of continuous runtime. A lithium-ion battery-powered top pick [a type of cargo handler] capable of opportunity charging, for instance, could have enough power onboard to complete a full eight-hour shift before needing to be charged.
As [for] the local electric grid handling the energy draw of port equipment: The answer depends on the grid stability and capacity in the local area and the fleet size. Charging heavy-duty electric equipment like this does demand a significant energy draw, so it is important to work with a partner who can help understand power requirements, evaluate charging strategies such as staggered or overnight charging when there is a lower burden on the grid, and speak with your local utility provider. It’s also important to note that not all electric equipment is dependent on electricity from the grid. HFC-powered equipment can be a strong option where the local grid is not reliable.
In terms of what operations need onsite in order to charge or fuel equipment: Apart from the container handling equipment, operations will need a charger for battery-electric equipment or hydrogen fueling stations and possibly storage—depending on your hydrogen sourcing strategy—for HFC-powered equipment.
DCV: Can you tell us a bit more about the recent deployments of Hyster’s battery-electric and hydrogen fuel cell port equipment?
Klaus: [Our] hydrogen fuel cell-powered reach stacker [a vehicle that can move containers around ports] at the Port of Valencia has successfully transitioned to real-world operation, marking the official launch of the piloting phase for the [European Union’s] H2Ports project.
It’s important to acknowledge that integrating any new technology requires a period of adjustment. Compared to a standard diesel truck, this initial startup phase requires added input and effort for both the reach stacker itself and the supporting hydrogen infrastructure.
Maintaining operational flexibility is also crucial during this pilot. We may encounter unforeseen challenges, such as temporary fluctuations in hydrogen supply or requirements for specialized parts. However, we’re committed to working collaboratively to address any such issues in a timely and professional manner.
The core objective of this project is to demonstrate the viability of hydrogen fuel cell technology in real-world port operations. Over a minimum two-year period, the reach stacker will be put through its paces, accumulating more than 5,000 operating hours. This data will be instrumental in proving that fuel cell reach stackers are a realistic and reliable option for the future of sustainable port operations.
We also have a special test agreement with APM Terminals in Mobile, Alabama, to deliver … 10 battery-electric terminal tractors [vehicles that move containers within a cargo yard or similar facility]. Hyster is onsite to provide support for these machines. We have a dedicated support team, solely to support our zero-emission port equipment projects around the globe.
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."