Intelligent workflows: orchestrating the intersection of AI and humans
Digitalization tools—such as control towers, dashboards, and digital workers—have greatly improved supply chain processes. But humans still sit at the center, deciding who or what performs what task or makes which decision. Intelligent workflows may change all that.
Ian Slazinik is an assistant professor of logistics and supply chain management at the Air Force Institute of Technology at Wright-Patterson Air Force Base near Dayton, Ohio.
Robert Glenn Richey Jr. is the Harbert Eminent Scholar in supply chain management at Auburn University and editor in chief of the Journal of Business Logistics.
No one would deny that managing a global supply chain is an increasingly difficult task. Today’s supply chain managers have to contend with significant disruptions—such as those caused by the COVID-19 pandemic, trade tensions, and natural disasters—as well as growing complexity from forces such as omnichannel retailing and increased customization. Many experts believe that to effectively manage this difficult terrain, companies have no choice but to harness the potential of digital technologies such as data analytics, artificial intelligence (AI), and robotic process automation (RPA).
At Auburn University, we have been studying how companies engage in this process of supply chain digital transformation. Toward this end, we conducted a focus group with 15 industry partners and interviewed an additional six individuals who are actively involved in supply chain digital transformation efforts. Our exploration focused on how these organizations deploy and utilize technology to achieve their transformation goals and how they are integrating technology and human resources to address supply chain challenges. (For more information on our methodology, see the sidebar “About this study” below.)
These experts spoke with us about the lessons learned from their digital transformation efforts while exploring what we see as the final phase of the journey: leveraging digital technologies to change the value proposition for the organization and redesigning processes so that the responsibility for execution lies primarily on technology instead of human workers.
We believe that to achieve this final stage, companies will need to embrace what are known as intelligent workflows or the purposeful planning of interactions between humans and technology. Intelligent workflows are a blending of technology and human workers that offer a comprehensive approach to orchestrating automation, AI, human workers, and system integration across entire business processes. They go beyond the realm of human-led AI and simple automation. They place technology at the center of end-to-end process execution, allowing humans to focus on providing high-value subject matter expertise.
What is digital transformation?
Digital transformation is a multiple-stage process by which organizations encapsulate, assess, and then shape their use of data and digital technologies to create additional value for themselves, their partners, and their customers. The process comprises three arguably sequential steps: digitization, digitalization, and digital transformation.1
These steps are often confused with each other, but we define them in the following manner. Digitization, sometimes called digital encapsulation, is converting existing data and documents into a digital format to accurately represent the physical world. In this stage, data is not altered or analyzed, it is merely encoded. Digitalization, predicated upon digitization, is altering processes, organizational structures, or decision-making architectures to leverage improved data capture, analysis, and information dissemination. Finally, digital transformation fundamentally changes the process to fully leverage these new digital technologies within and across firms. Digital transformation ultimately affects how the organization creates value within its supply network. The table in Figure 1 provides more detail about the different phases of digital transformation and the technologies involved.
The majority of the companies involved in our study are in the midst of a digital transformation effort but have not yet entered the final stage. Most had already taken the first step of digitizing their data, seeing it as essential to company survival. As one participant said: “Digitization of the supply chain is a requirement for being able to be an omnichannel retailer in the future. You’ve got to know what you have. You’ve got to know where it is with [a] high degree of accuracy. Or you’re dead.”2
Many of our participating companies had also moved beyond digitizing their data and into the digitalization phase. At this stage, they are using digital technologies to augment business processes but have not fundamentally transformed them. They are providing their human managers with tools—such as dashboards, inventory trackers, alerting systems, and even RPA and bots—to improve the efficiency and effectiveness of their processes. The human managers, however, are still central to the execution of the process. For example, alerts may bring a situation to a manager’s attention when a predefined digital metric is tripped, but it is still up to the manager to act. Similarly, dashboards may be collecting data from multiple sources in one place, but managers still have to interpret and act upon that data.
Only a couple of companies in our study had entered the third phase. One company was actively using intelligent workflows to orchestrate the execution of supply chain processes, and another was building the processes and infrastructure needed to do so.
Limits of digitalization
While many of the companies involved in our study were in the digitalization phase, most of the experts we talked to were already well aware of the limitations of digitalization tools. For example, our experts quickly pointed out that the information presented through sprawling dashboards can be overwhelming for decision makers, who struggled to find the correct information at the point of need.“I was never short of information or dashboards. It was like walking into the Louvre. There's artwork everywhere, but at the end of the day, you walk out like, ‘Wow. Awesome.’ But not sure what the hell to do about it.”
Human managers are still needed to evaluate the significance of the data presented through the dashboards. “We’re already digitized; we keep too much data. We have so many dashboards all over the place that no one looks at them. So, what we’re trying to do is not just be digitized but cognitive in our approach.”
While dashboards and control towers help consolidate information, they often lack flexibility and are only adaptable through human intervention. For example, the human manager/expert asks questions and then uses dashboards and control towers to evaluate additional data before deciding on a solution. The efficiency of this process can be improved through AI, usually in the form of machine learning (ML), to evaluate and combine extensive and complex data to generate predictions based on numerous decision alternatives. But even then, a great deal of human involvement is needed. There are still some number of cases for which the model’s predictions are not correct. Human subject matter experts (SMEs) are still required to focus human attention on cases that would otherwise be mishandled and to generate new training data that can be used to retrain the AI model to improve performance.
Additionally, humans are needed to detect when the conditions under which the model was trained have changed. For example, a machine learning model that predicts transit times trained under pre-COVID conditions would likely perform poorly under disrupted COVID conditions.
Similar limitations exists when it comes to using bots, digital workers, or decision engines to automate traditional human work. This type of RPA (sometimes called intelligent process automation) seeks to automate discrete, repetitive tasks, such as reading data elements from specific, fixed cells within a spreadsheet. Although digital workers are very efficient in carrying out discrete tasks, their ability to complete tasks can vary significantly.
At this point in time, our experts say that automated technology acting independently from human input could only work in specific scenarios. Most real-world processes exist within an extensive, complex context that also involves human users/interactions and integration with other systems. As one participant said, “The prescriptive part is tough because it requires an intimate knowledge of the business you're trying to affect.”A human manager/expert is needed to use their intuitive or “tacit” knowledge in combination with the AI.
Indeed, in most cases, even an AI-enabled control tower still requires a human to orchestrate a business process through its multiple steps. Even in a digitalization environment where existing processes are optimized with technology, there are still steps that require varying degrees of human review/action or the ability to pull data from or push updates to other systems (such as an enterprise resource planning systems). Technology may be able to act independently within the larger process, but a human will still be needed to provide coordination across multiple steps in the process.
However, if this orchestration piece could be automated, even greater efficiencies would be gained. “We have a limited amount of people, and we aren’t going to get more people. That’s the reality. So how do we make the people we have more effective to solve the things we need to solve?”
Digital transformation into intelligent workflows
As described earlier, intelligent workflows refer to the orchestration of process automation, AI, and human experts across an end-to-end business process.
An intelligent workflow implementation plan would provide parameters for the integration of all of the interactions that need to occur among digital workers, human workers, AI, and other IT systems in order to complete an end-to-end business process. Technology would now be handling all the administrative details of ferrying work through the tasks that comprise the business process. For example, RPA (or digital workers) would handle discrete, repetitive, well-defined task work. AI would handle cognitive tasks, such as decision-making and natural language interaction or content capture (for example, extracting information from scanned documents). Finally, human experts would support the overall intelligent workflow through ongoing quality assurance, handling cases that automation/AI cannot manage and investigating/resolving issues where automation/AI is unsuccessful. Human experts would also provide feedback to improve the process automation and AI for continual improvement of the intelligent workflow.
In this scenario, the human worker becomes a supporting actor in the workflow. Although their skills are crucial to the ongoing success and improvement of the workflow, they are not directly responsible for working through the end-to-end business process. That responsibility is now assumed by the workflow orchestration service, the intelligent workflow.
The study participants that are already considering intelligent workflows describe some version of the vision outlined above. Their first steps toward that goal may be similar to the ones that the oil and gas company Shell is taking, as described in a recent Harvard Business Review article.3 Shell has begun reengineering its supply chain, manufacturing, and maintenance processes so that they are enabled by AI. For example, the company is automating its inspection processes, using robots and drones to monitor Shell’s energy and chemical plants, pipelines, offshore facilities, and wind and solar farms. According to the article, “Some Shell facilities are so large that it would previously have taken years to inspect everything manually—now drones and robots are being introduced to automate these processes and help shorten the cycle time.” Human inspectors and technicians play more of a support role, spending their time prioritizing projects, performing more advanced verification, annotating images to improve inspection algorithms, and managing the training processes for ML models.
As they redesign their processes, some of our study participants are also exploring how worker skills will be affected by this transition. Because administrative tasks and workflow management are increasingly automated, the human skills required will focus more on subject matter domain knowledge and process analysis/design.
Some participants reported that workers have said that their contributions feel more significant when their expertise is more effectively utilized. Employees engaged with intelligent workflows may feel their role becomes increasingly strategic and innovative as a result.
Long road ahead
As they described the digital transformation journey, our study participants were clear that the process was lengthy—often lasting multiple years—and involved all levels of the organization. Our experts told us that it is important to take a deliberate approach to transformation that recognizes the importance of employee buy-in and proper encapsulation of data.
As we analyzed the information we gathered from the study participants, it became evident that digitalization improved the speed and quality of decision-making not just by increasing visibility and data sharing across the supply network, but also by improving the decision-making processes themselves. It also was clear that even as organizations used more AI, there is still a key role for human workers. Companies still need to draw on humans’ tacit knowledge to assess the recommendations made by AI and to provide feedback to the process automation and AI portions of the intelligent workflow.
Where do we go from here? Further discussion is needed to investigate how the relationships among partners within a supply network influence the application of technology/information to achieve transparency, security, and responsiveness. Additionally, there is still more to be learned about how intelligent workflows can orchestrate automation, AI/ML (including emerging generative AI technologies), and human interactions across end-to-end processes.
Authors’ Note: We are incredibly appreciative of the insights from our diverse participants. We also want to thank Auburn University’s Center for Supply Chain Innovation and Auburn’s RFID Laboratory for their insights.
Notes:
1. P. C. Verhoef, T. Broekhuizen, Y. Bart, A. Bhattacharya, J.Q. Dong, N. Fabian, and M. Haenlein, “Digital transformation: A multidisciplinary reflection and research agenda,” Journal of Business Research, 122 (2021): 889-901.
2. Quotes throughout this article are from our industry expert interviews and focus group participants.
3. T.H. Davenport, M. Holweg, and D. Jeavons, “How AI Is Helping Companies Redesign Processes,” Harvard Business Review, (March 2, 2023): https://hbr.org/2023/03/how-ai-is-helping-companies-redesign-processes
About this study
Information was collected through a focus group and semi-structured interviews with various leaders in organizations that have experienced unique digital transition initiatives. Many of these leaders spent the years before our project navigating their respective digital transformations and were anxious to share lessons learned.
Expert Panel: A focus group was conducted with 15 industry partners that lasted over an hour. Our questions focused on the most pertinent issues of digital transformation efforts and helped to identify specific areas to explore further in targeted interviews.
Interviews: Interviews were also conducted with six industry participants involved with supply chain digital transformation efforts. These interviews allowed us to dig deeper into the specific and unique thought processes involved in digital transformations. Because this research drew from supply chain experts from a broad array of logistics service providers, retailers, distributors, and manufacturers, we were able to develop an informed perspective on digital transformation practices. Interacting with industry experts led to insights into digital transformation norms and practices.
Progress in generative AI (GenAI) is poised to impact business procurement processes through advancements in three areas—agentic reasoning, multimodality, and AI agents—according to Gartner Inc.
Those functions will redefine how procurement operates and significantly impact the agendas of chief procurement officers (CPOs). And 72% of procurement leaders are already prioritizing the integration of GenAI into their strategies, thus highlighting the recognition of its potential to drive significant improvements in efficiency and effectiveness, Gartner found in a survey conducted in July, 2024, with 258 global respondents.
Gartner defined the new functions as follows:
Agentic reasoning in GenAI allows for advanced decision-making processes that mimic human-like cognition. This capability will enable procurement functions to leverage GenAI to analyze complex scenarios and make informed decisions with greater accuracy and speed.
Multimodality refers to the ability of GenAI to process and integrate multiple forms of data, such as text, images, and audio. This will make GenAI more intuitively consumable to users and enhance procurement's ability to gather and analyze diverse information sources, leading to more comprehensive insights and better-informed strategies.
AI agents are autonomous systems that can perform tasks and make decisions on behalf of human operators. In procurement, these agents will automate procurement tasks and activities, freeing up human resources to focus on strategic initiatives, complex problem-solving and edge cases.
As CPOs look to maximize the value of GenAI in procurement, the study recommended three starting points: double down on data governance, develop and incorporate privacy standards into contracts, and increase procurement thresholds.
“These advancements will usher procurement into an era where the distance between ideas, insights, and actions will shorten rapidly,” Ryan Polk, senior director analyst in Gartner’s Supply Chain practice, said in a release. "Procurement leaders who build their foundation now through a focus on data quality, privacy and risk management have the potential to reap new levels of productivity and strategic value from the technology."
Businesses are cautiously optimistic as peak holiday shipping season draws near, with many anticipating year-over-year sales increases as they continue to battle challenging supply chain conditions.
That’s according to the DHL 2024 Peak Season Shipping Survey, released today by express shipping service provider DHL Express U.S. The company surveyed small and medium-sized enterprises (SMEs) to gauge their holiday business outlook compared to last year and found that a mix of optimism and “strategic caution” prevail ahead of this year’s peak.
Nearly half (48%) of the SMEs surveyed said they expect higher holiday sales compared to 2023, while 44% said they expect sales to remain on par with last year, and just 8% said they foresee a decline. Respondents said the main challenges to hitting those goals are supply chain problems (35%), inflation and fluctuating consumer demand (34%), staffing (16%), and inventory challenges (14%).
But respondents said they have strategies in place to tackle those issues. Many said they began preparing for holiday season earlier this year—with 45% saying they started planning in Q2 or earlier, up from 39% last year. Other strategies include expanding into international markets (35%) and leveraging holiday discounts (32%).
Sixty percent of respondents said they will prioritize personalized customer service as a way to enhance customer interactions and loyalty this year. Still others said they will invest in enhanced web and mobile experiences (23%) and eco-friendly practices (13%) to draw customers this holiday season.
That challenge is one of the reasons that fewer shoppers overall are satisfied with their shopping experiences lately, Lincolnshire, Illinois-based Zebra said in its “17th Annual Global Shopper Study.”th Annual Global Shopper Study.” While 85% of shoppers last year were satisfied with both the in-store and online experiences, only 81% in 2024 are satisfied with the in-store experience and just 79% with online shopping.
In response, most retailers (78%) say they are investing in technology tools that can help both frontline workers and those watching operations from behind the scenes to minimize theft and loss, Zebra said.
Just 38% of retailers currently use AI-based prescriptive analytics for loss prevention, but a much larger 50% say they plan to use it in the next 1-3 years. That was followed by self-checkout cameras and sensors (45%), computer vision (46%), and RFID tags and readers (42%) that are planned for use within the next three years, specifically for loss prevention.
Those strategies could help improve the brick and mortar shopping experience, since 78% of shoppers say it’s annoying when products are locked up or secured within cases. Adding to that frustration is that it’s hard to find an associate while shopping in stores these days, according to 70% of consumers. In response, some just walk out; one in five shoppers has left a store without getting what they needed because a retail associate wasn’t available to help, an increase over the past two years.
The survey also identified additional frustrations faced by retailers and associates:
challenges with offering easy options for click-and-collect or returns, despite high shopper demand for them
the struggle to confirm current inventory and pricing
lingering labor shortages and increasing loss incidents, even as shoppers return to stores
“Many retailers are laying the groundwork to build a modern store experience,” Matt Guiste, Global Retail Technology Strategist, Zebra Technologies, said in a release. “They are investing in mobile and intelligent automation technologies to help inform operational decisions and enable associates to do the things that keep shoppers happy.”
The survey was administered online by Azure Knowledge Corporation and included 4,200 adult shoppers (age 18+), decision-makers, and associates, who replied to questions about the topics of shopper experience, device and technology usage, and delivery and fulfillment in store and online.
An eight-year veteran of the Georgia company, Hakala will begin his new role on January 1, when the current CEO, Tero Peltomäki, will retire after a long and noteworthy career, continuing as a member of the board of directors, Cimcorp said.
According to Hakala, automation is an inevitable course in Cimcorp’s core sectors, and the company’s end-to-end capabilities will be crucial for clients’ success. In the past, both the tire and grocery retail industries have automated individual machines and parts of their operations. In recent years, automation has spread throughout the facilities, as companies want to be able to see their entire operation with one look, utilize analytics, optimize processes, and lead with data.
“Cimcorp has always grown by starting small in the new business segments. We’ve created one solution first, and as we’ve gained more knowledge of our clients’ challenges, we have been able to expand,” Hakala said in a release. “In every phase, we aim to bring our experience to the table and even challenge the client’s initial perspective. We are interested in what our client does and how it could be done better and more efficiently.”
Although many shoppers will
return to physical stores this holiday season, online shopping remains a driving force behind peak-season shipping challenges, especially when it comes to the last mile. Consumers still want fast, free shipping if they can get it—without any delays or disruptions to their holiday deliveries.
One disruptor that gets a lot of headlines this time of year is package theft—committed by so-called “porch pirates.” These are thieves who snatch parcels from front stairs, side porches, and driveways in neighborhoods across the country. The problem adds up to billions of dollars in stolen merchandise each year—not to mention headaches for shippers, parcel delivery companies, and, of course, consumers.
Given the scope of the problem, it’s no wonder online shoppers are worried about it—especially during holiday season. In its annual report on package theft trends, released in October, the
security-focused research and product review firm Security.org found that:
17% of Americans had a package stolen in the past three months, with the typical stolen parcel worth about $50. Some 44% said they’d had a package taken at some point in their life.
Package thieves poached more than $8 billion in merchandise over the past year.
18% of adults said they’d had a package stolen that contained a gift for someone else.
Ahead of the holiday season, 88% of adults said they were worried about theft of online purchases, with more than a quarter saying they were “extremely” or “very” concerned.
But it doesn’t have to be that way. There are some low-tech steps consumers can take to help guard against porch piracy along with some high-tech logistics-focused innovations in the pipeline that can protect deliveries in the last mile. First, some common-sense advice on avoiding package theft from the Security.org research:
Install a doorbell camera, which is a relatively low-cost deterrent.
Bring packages inside promptly or arrange to have them delivered to a secure location if no one will be at home.
Consider using click-and-collect options when possible.
If the retailer allows you to specify delivery-time windows, consider doing so to avoid having packages sit outside for extended periods.
These steps may sound basic, but they are by no means a given: Fewer than half of Americans consider the timing of deliveries, less than a third have a doorbell camera, and nearly one-fifth take no precautions to prevent package theft, according to the research.
Tech vendors are stepping up to help. One example is
Arrive AI, which develops smart mailboxes for last-mile delivery and pickup. The company says its Mailbox-as-a-Service (MaaS) platform will revolutionize the last mile by building a network of parcel-storage boxes that can be accessed by people, drones, or robots. In a nutshell: Packages are placed into a weatherproof box via drone, robot, driverless carrier, or traditional delivery method—and no one other than the rightful owner can access it.
Although the platform is still in development, the company already offers solutions for business clients looking to secure high-value deliveries and sensitive shipments. The health-care industry is one example: Arrive AI offers secure drone delivery of medical supplies, prescriptions, lab samples, and the like to hospitals and other health-care facilities. The platform provides real-time tracking, chain-of-custody controls, and theft-prevention features. Arrive is conducting short-term deployments between logistics companies and health-care partners now, according to a company spokesperson.
The MaaS solution has a pretty high cool factor. And the common-sense best practices just seem like solid advice. Maybe combining both is the key to a more secure last mile—during peak shipping season and throughout the year as well.