Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
You’ve probably seen them: YouTube videos of forklift operators accidentally spilling their loads or upending their trucks. While they often poke fun at the hapless operator, they are no laughing matter. These types of accidents—including longitudinal (forward or backward) or lateral (sideways) tipping—not only result in damage to the load, but they also put the life of the operator and nearby pedestrians at risk. On average, there are 70 to 100 forklift-related fatalities and many thousands of nonfatal forklift-related injuries in the United States each year.
Although the number of reported incidents involving forklifts has steadily declined since lift truck operator training and certification were mandated by the Occupational Safety and Health Administration (OSHA) decades ago, some industry observers say they’re noticing more such incidents, including tipovers. There are no data available to confirm those anecdotal observations, but one likely factor may be the high rate of turnover among warehouse workers. According to the U.S. Bureau of Labor Statistics, roughly 50% of warehouse operators left their jobs in 2021—and reports of much higher turnover rates abound. That means warehouse managers are “constantly training new people … [and] in some cases, an operator may not have the necessary level of training or experience for a situation they find themselves in, such as handling heavy loads or high lift heights,” says Alex Sakowski, new products business manager for Yale Lift Truck Technologies.
A second, related, factor may be “the explosion in the number of e-commerce warehouses and DCs,” says Martin Boyd, vice president, product planning and solutions for the Hyster Co. These facilities are high-speed and high-volume, with a lot of forklifts, warehouse robots, and/or people moving around. While he has not seen verifying data, Boyd believes that the proliferation of such warehouse facilities combined with ongoing labor shortages in e-commerce might be contributing to a potential increase in incidents involving forklifts.
All that suggests that it’s a good time for warehouse and fleet managers to pay special attention to preventing tipovers. The list of potential causes of these dangerous accidents is long indeed. The most common ones fall into four general categories:
Speed—drivingtoo fast, especially without a load or over uneven surfaces; accelerating or stopping too quickly; turning a corner too quickly or at a sharp angle; traveling too fast with an oversized or oddly shaped load.
Load and weight—carrying a load that is too heavy for the truck, is not evenly balanced by weight on the forks, or is unstable; allowing a load suspended from the forks to swing; failing to take into account the weight of attachments.
Travel—turning or improperly lifting or lowering on a ramp or slope; traveling with the forks or a heavy attachment raised; driving with a wheel over the edge of a dock plate or a dropoff; hitting an overhead obstruction; traveling in wet or slippery conditions.
Mast control—tilting the mast too far forward or backward, or too quickly in either direction; failing to tilt the mast slightly backward when traveling; tilting an elevated load forward except when depositing it on a rack or stack.
Many potential causes means many ways to prevent tipovers. Forklift safety experts point to three key elements for improving safety: an understanding of “forklift physics,” effective operator training, and support from safety-enhancing technology.
STAY CENTERED
While lift truck operators are unlikely to be physics experts, they do need to understand the physical forces that affect the stability of the forklift they drive, whether it’s a traditional sit-down counterbalanced truck or a standup model. This is a complex topic that can only be properly addressed through OSHA-compliant training; the explanation offered here is just a brief summary of considerations gathered from forklift manufacturers, dealers, and training firms. In particular, we relied on the descriptions and illustrations for counterbalanced lift trucks in the online article “How to Avoid Forklift Tip Overs” by Mitsubishi Logisnext Americas. (Note: Always consult the operations manual for instructions specific to a particular forklift model.)
Forklift stability—both longitudinal and lateral—depends on several factors. One is the balance between the weight of the load on the forks and the weight of the truck, with the front axle functioning as the fulcrum. Another is the “center of gravity,” or the point of an object where the weight is evenly distributed.
A lift truck and a load each has its own center of gravity. When the forklift picks up the load, the newly combined unit now has a new, combined center of gravity (CG). The CG moves forward and backward as the mast is tilted in those directions, and it moves up and down as the mast is raised and lowered. Thus, the CG is affected by the size, weight, shape, and position of the load; the height of the lifted load; the degree of tilt; the forces generated by accelerating, braking, or turning; and the condition or grade of the surface where the lift truck operates. In addition, any attachment operation, such as moving a side shifter or rotating a roll clamp, will change the CG, especially at height or if the clamp isn’t centered on the roll. In short, everything an operator does affects the center of gravity.
Shown above is a depiction of a stability triangle showing the center of gravity for the (1) forklift, (2) combined forklift plus load, and (3) load.
For a forklift to remain stable, the center of gravity must stay within a “stability triangle”—an imaginary triangle that draws a line between the front wheels and stretches to the center point of the rear axle. (See illustration at left.) This triangle applies to both four-wheeled and three-wheeled lift trucks. While it might appear that a four-wheeled model would have a rectangular base, it actually does not. Unlike the front axle, which remains in place, with only the wheels turning, the rear axle pivots on a pin located at the center point of the axle. The pivot point is the third point of the triangle.
If the center of gravity moves forward of the front axle, then the lift truck will tip forward. If it moves outside of the triangle on either side, then the lift truck will tip sideways. When the forks are kept low, especially when carrying a load, the lift truck is more stable. Raising the forks high—with or without a load—makes it easier to tip over. In addition, exceeding the forklift’s rated capacity or the load center (the allowable distance from the front face of the forks to the load’s center of gravity), both of which appear on the forklift’s capacity plate, can also cause tipping.
The above information is just the tip of the iceberg (or maybe the tip of the forks?) when it comes to maintaining stability. The specifics will vary depending on the forklift class and model, so be sure to consult your local forklift dealer or other qualified provider of operator training for guidance.
SHOW, DON’T JUST TELL
Good safety training programs should teach operators how to avoid all of the errors mentioned at the beginning of this article. But training operators on how to avoid situations that could lead to tipovers comes with some special challenges for trainers.
First, they have to overcome the human tendency on their students’ part to assume that accidents happen to other people and convince them to take the risk seriously. Operators are more likely to understand how serious lateral and longitudinal tipovers are if trainers “teach people in a way they can relate to,” says Tony Parsons, regional operator training manager for Wolter Inc., which represents forklift makers Linde and Doosan throughout the Midwest. For example, to help operators visualize the number of forklift-related accidents and injuries reported in the U.S. each year, he often compares that statistic to the capacity of a local sports arena or stadium.
A wire model with moveable sinker can be used to demonstrate how a truck's center of gravity changes during common forklift operations.
Second, trainers must teach in a way that is effective while also minimizing or eliminating the chances of accidents during training sessions. One way to do that is to reinforce verbal explanations and diagrams with physical props designed to demonstrate “forklift physics” principles. “There’s a much greater likelihood [operators] will understand center of gravity and stability if they can see with their own eyes” the impact of load weights and operator behaviors, Parsons says. To do this safely, many trainers use accurate, scale models of the various classes of lift trucks. Parsons and others also favor a simple wire model (see photo) that uses a lead sinker hanging on a wire to demonstrate how the center of gravity changes and may leave the stability triangle as a load moves horizontally and vertically, when an unloaded truck travels with raised forks, and when a mast tilts forward and backward.
And third, they must make sure operators are trained and certified on each type of forklift they will use in their job because each has unique operating requirements and will respond differently to changes in the center of gravity. “You can’t train operators on a sit-down counterbalanced truck and then expect them to safely operate a pantograph reach truck or an order selector that elevates over 400 inches high,” Boyd says, adding that the sit-down and standup trucks also have completely different operator stations and controls. “Operators must be trained on the specific pieces of equipment they plan to use.”
Virtual training, which allows operators to apply what they’ve learned in various scenarios in a safe, controlled environment, is quickly gaining fans. Virtual training includes simulation, using desktop simulators that are similar to video games; and virtual reality (VR) systems, where learners wear VR headsets while at the controls of an actual (but immobile) forklift or a simulated forklift “dashboard.” Both are interactive; i.e., the scenarios respond to users’ actions just as they would in real life. Simulation and VR systems can expose learners to potential hazards like tipping and rollovers virtually, so they can learn how to recognize, prevent, or react to them without putting people and products at risk. The trainer, who is able to see what the student is doing, can provide immediate feedback and correction.
TAKE ADVANTAGE OF TECH
While effective operator training is fundamental to preventing tipovers, technology can lend a helping hand. For example, Parsons of Wolter Inc. notes that forklift telematics software can be programmed to limit truck speeds in specific areas of a facility, preventing the excessive speed that can lead to accidents. He emphasizes, though, that such technology is not a substitute for operators’ own decision making. “It’s there to remind them that they should be driving at appropriate speeds,” he says. “The software provides positive reinforcement of good driving habits to limit risk.”
Technology that detects imbalances and enhances stability is designed to help trained operators reduce lateral and longitudinal tipping. One example is Toyota Forklift’s patented System of Active Stability (SAS). Sensors take over 3,000 readings per second to detect instability. For four-wheel models, the system locks the rear steer axle in place, converting the forklift’s stability “footprint” from a triangle to a rectangular pattern to reduce the risk of a lateral tipover. For three-wheel forklifts, which can be more prone to lateral tipping when cornering at excessive speeds, SAS limits the drive speed when cornering. When risk of a longitudinal tip is detected, SAS reduces the extended mast’s forward or reverse tilt speed as appropriate for the weight of the load. Front and back angle control helps prevent forward or backward tipping that could cause a load to fall off the forks.
Yale Lift Truck Technologies’ Yale Reliant system continually maintains the combined center of gravity while taking into account the weight of the load, the lift truck’s weight and capacity, its travel speed and acceleration, whether the mast is tilted forward or back, and whether the forks are raised or lowered. If the system detects a condition that could cause instability, it proactively deploys what Sakowski calls “prohibitors”: hydraulic and traction controls that temporarily override the operator’s manual controls to restore stability. For example, depending on the specific situation, Yale Reliant can take such actions as preventing lifting and lowering of loads that exceed weight limits, and reducing mast speed, tilt, and height, to name just two of many possible responses.
Tipovers can also happen when operators suddenly brake or swerve for a pedestrian or object in the travel path. Yale Reliant includes object and proximity sensing: When the system detects an obstruction, it takes into account the load weight, travel speed, and center of gravity to slow the truck safely. And because the system provides a visual alert on a display screen showing operators what their error is at the same time it is imposing restrictions on the truck’s operation, it can instill safe driving habits and help new operators avoid tipovers, Sakowski says.
The Hyster Dynamic Stability System (DSS) employs an array of sensors that monitor speed, mast tilt position, fork height, and steering angle and detect whether or not a load is on the forks. DSS is constantly monitoring all of those inputs dynamically, and if it senses instability, it will then—based on the complete picture of the lift truck’s condition—limit the operator’s control inputs to help maintain stability, Boyd explains. For example, when DSS detects a load at high height being tilted forward, it will limit both tilt speed and tilt angle to help maintain stability. Another example: When DSS detects a load that is beyond a certain height threshold, the system will limit top speed.
Boyd emphasizes that such technology is never a substitute for effective operator safety training; rather, it should be used to reinforce and supplement the training. DSS utilizes the truck’s display to alert the operator when mistakes are made and displays simple icons indicating what is happening and why. The system is able to wirelessly transmit event data through Hyster’s optional Tracker telemetry system, allowing fleet managers to connect those incidents to specific trucks and operators—opening the opportunity to provide extra training for operators who need reinforcement.
Even with the best training program and the most experienced forklift operators, it’s impossible to foresee every possible error or hazard that could lead to a tipover. By recognizing the potential causes of lateral and longitudinal tipping, and focusing on the three key safety factors—an understanding of “forklift physics,” effective operator training, and assistance from safety-enhancing technology—forklift fleets can make strides toward preventing these dangerous accidents.
IF YOU DO TIP OR FALL OVER …
When a sit-down counterbalanced forklift tips or falls over, the operator’s first instinct will likely be to jump out of the truck. But every source we consulted agrees: The safest course is to stay put. That’s because an operator who jumps or falls from the forklift will not be sufficiently clear of the vehicle to avoid being crushed by the tumbling truck body, mast, or overhead guard.
If a sit-down forklift does tip or fall over, the operator should:
Stay seated with seatbelt properly secured
Firmly grip the steering wheel
Lean away from the fall
Lean forward
Brace their feet
An exception applies to operators of standup rider forklifts. The Occupational Safety and Health Administration (OSHA) says that if a tipover occurs, operators of standup forklifts with rear-entry access should step backward off the forklift and away from the truck.
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."