You may not be able to see it, but artificial intelligence (AI) is probably installed on systems and equipment throughout your warehouse. Here’s how to judge its quality, effectiveness, and impact.
Ben Ames has spent 20 years as a journalist since starting out as a daily newspaper reporter in Pennsylvania in 1995. From 1999 forward, he has focused on business and technology reporting for a number of trade journals, beginning when he joined Design News and Modern Materials Handling magazines. Ames is author of the trail guide "Hiking Massachusetts" and is a graduate of the Columbia School of Journalism.
Step inside one of today’s high-tech warehouses, and you might marvel at the high-speed conveyors, voice-operated picking headsets, or fleets of autonomous mobile robots (AMRs) bustling about. But you’d be hard-pressed to point out any concrete examples of one of the most advanced technologies in the facility: artificial intelligence (AI).
Although it’s fast becoming an industry buzzword, AI is little understood outside of engineering circles, and its impact on logistics operations is hard to trace. But the truth is, the technology is already widely used, powering everything from the conversational interface on the smartphone in your pocket to the warehouse management system (WMS) that controls the flow of goods through the DC.
So if you can’t see the AI in your warehouse, how can you get a handle on it? That is, how do you select a good system, judge its effectiveness, and measure its impact on your business over time? To get answers to these and other questions, we asked some experts to share their thoughts about AI and the warehouse.
LEARN THE ABCs OF AI
To begin with, organizations that want to be successful at adopting AI have to change their basic approach to buying warehouse technology, says Peter Chen, co-founder and CEO of Covariant, which develops AI for commercial devices like robotic picking arms.
That’s because AI operates in a fundamentally different way from previous generations of logistics and material handling tools. Twenty years ago, logistics managers chose hardware—such as forklifts or conveyors—based on quantifiable attributes like speed, strength, and durability. As technology progressed and they began to select software—like a warehouse control system (WCS) or a WMS—they added criteria like cybersecurity, tech support, and ease of upgrades to the list. And now to buy AI systems, they need to adopt a new set of strategies, he says.
There are a couple of reasons for that. For one thing, AI differs from other technologies in that it becomes more, rather than less, effective over time—in direct contrast to, say, hardware that slowly breaks down with use or software that eventually becomes obsolete. What sets AI apart is that it doesn’t rely on “programmed intelligence,” Chen says. “With AI, you have intelligence that is not preprogrammed; instead, it learns from data and learns from experience. As opposed to static behavior, it learns from its own trial and error, and improves over time.”
In Covariant’s case, that learning curve enables machines like robotic arms to handle an ever-evolving and expanding range of items without requiring software upgrades or engineering studies, Chen says. Instead, the arm experiments with a wide array of stock-keeping units (SKUs) and slowly refines its ability to grasp items of various types, whether it’s apparel, grocery items, pharmaceuticals, or cosmetics.
Another factor that differentiates AI from other technologies is that companies get the best results when they start as soon as possible. Just as financial advisers tell clients to start investing early in life so their savings can grow through compound interest, AI works best when it has time to learn and develop. That contrasts with the typical hardware-buying strategy of waiting to refresh or replace equipment until the vendor rolls out the latest version. “The best way to buy AI is to get going as early as possible, because it can start learning ASAP,” Chen says. “Roll out your first site as quickly as possible so [the system] can collect data and start learning. The goal is to gather vast amounts of data, then develop analytics and actionable insights, so it compounds the results of AI adoption.”
SO YOU HAVE A NEW AI; NOW WHAT?
Measuring the results is a critical step in justifying any warehouse purchase, but it comes with an added challenge for AI because artificial intelligence typically operates “behind the scenes,” says John Black, senior vice president for product engineering at Brain Corp. The San Diego-based firm develops AI software and analytics to run AMRs from third-party manufacturers, with a focus on the automated floor-cleaning robots found in factories, DCs, retail stores, and office buildings.
Just as most people don’t know what type of microchip is powering their personal computer, most users of AI-powered devices can’t pinpoint exactly which functions rely on artificial intelligence. That makes it tough to gauge how well the technology is working, particularly because AI is typically held to a pass/fail standard—if a machine’s logic makes a single mistake, the entire device is seen as defective. For example, as an AMR cruises through a DC, it executes dozens of AI-enabled steps along the way, from localization and navigation to data gathering and analytics. If it fails at any one of those steps, then the AMR is basically useless. “You have to get all the way there,” Black says. “You can get most of the way there, and that is interesting, but it’s not enough to get a [return on investment]” for the company that bought the AMR.
“[AI] has to be nearly perfect. The measure is, how much time can this robot go without an intervention? You can send an employee over to fix a problem on an AMR, but every touch [diminishes the system’s return]. The goal is no-touch autonomy,” he says. “What you’re paying for with automation is accuracy and repeatability. If you have to have a person babysitting it, essentially you’ve just changed their job to overseeing the task and haven’t truly repurposed that employee from a labor standpoint.”
By that measure, AI works best when people forget they’re even using it, agrees Mike Myers, director of solutions at Third Wave Automation. The company incorporates its AI into reach trucks built by partner companies, allowing those forklifts to become autonomous vehicles.
Myers points to AI that has run for years as a basic “rules engine” in the accounting software many people use to file their personal tax returns. More recently, some developers of tier-one warehouse management systems have applied AI to the complex puzzle of managing fulfillment operations in a busy e-commerce DC. “And in a WMS, the AI is invisible in how it works. That’s how you know things are effective—when people don’t have to go into the WMS; they can just go to the end points” and follow the software’s guidance, he says.
WHAT EXACTLY IS YOUR AI THINKING ABOUT?
Striking a balance between automated decision making and human oversight is key to generating a solid ROI (return on investment) from an AI system, Myers says. But to measure how independently the AI in your warehouse is performing, you need to know exactly what it’s doing. And that can be a challenge.
A common misconception about AI is that it acts as “general intelligence,” functioning like a sentient robot in a Hollywood movie, Myers observes. But the truth is that most AI performs a series of small jobs, as opposed to pondering big questions like the meaning of life. “AI is in the vehicle navigation, the high-level route planning, and the sequencing of tasks in a facility, and it’s also in Siri on your iPhone,” Myers says. But as impressive as a tool like Siri is, it works through a series of machine learning and language processing steps, not through an umbrella of overall awareness, he explains. “So ‘general intelligence’ AI is not necessary for practical use cases; you can break up all those cases to achieve each step.”
In the end, the best way to measure an AI system’s impact on your logistics operations is to go back to the classic supply chain yardstick—the key performance indicator (KPI). “KPIs don’t change, whether you’re looking at cost per unit, SLA [service level agreement] adherence, or whatever,” Myers says. “Consistency in meeting those numbers is a measure of effectiveness. The AI is just a component, one machine in the entire system. But because AI is self-improving, [the fact that you’re] making progress toward those KPIs is how you know it’s working.”
Logistics real estate developer Prologis today named a new chief executive, saying the company’s current president, Dan Letter, will succeed CEO and co-founder Hamid Moghadam when he steps down in about a year.
After retiring on January 1, 2026, Moghadam will continue as San Francisco-based Prologis’ executive chairman, providing strategic guidance. According to the company, Moghadam co-founded Prologis’ predecessor, AMB Property Corporation, in 1983. Under his leadership, the company grew from a startup to a global leader, with a successful IPO in 1997 and its merger with ProLogis in 2011.
Letter has been with Prologis since 2004, and before being president served as global head of capital deployment, where he had responsibility for the company’s Investment Committee, deployment pipeline management, and multi-market portfolio acquisitions and dispositions.
Irving F. “Bud” Lyons, lead independent director for Prologis’ Board of Directors, said: “We are deeply grateful for Hamid’s transformative leadership. Hamid’s 40-plus-year tenure—starting as an entrepreneurial co-founder and evolving into the CEO of a major public company—is a rare achievement in today’s corporate world. We are confident that Dan is the right leader to guide Prologis in its next chapter, and this transition underscores the strength and continuity of our leadership team.”
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."