In Person interview: Mike Futch of Tompkins Robotics
In our continuing series of discussions with top supply-chain company executives, Mike Futch discusses the current robotics industry, applications, and the future of automated designs.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Mike Futch is president, CEO, and one of the founders of Tompkins Robotics. He was instrumental in bringing the company’s robotic sortation systems to the market and continues to drives much of the new application development, product conceptualization, and integration with partners. Futch also had a successful career in the U.S. Air Force and as a leader at several consulting firms. He recently spoke with David Maloney, DC Velocity’s group editorial director.
Q: WHAT IS THE CURRENT STATE OF THE ROBOTICS INDUSTRY?
A: The robotics industry is strong and continues to grow at a fast pace. The primary driver for this is growth in work-content and the shortage of labor, coupled with rapidly rising salaries. The growth in work-content is due to supply chains processing more and more individual items. As the handling of items increases and there is less case handling, the work-content goes up.
Combining that with the availability, retention, and cost of labor creates a serious shortfall for firms to meet demand. Robot solutions allow for an increase in efficiency, accuracy, and overall productivity. Robotics also allow a firm to get more work done, add capacity, and create better work environments with the same staff. The ability to integrate and develop new robotic solutions will continue and will only further accelerate adoption of robotic technologies.
Q: WHAT IS THE TIPPING POINT WHERE DISTRIBUTORS REALIZE THEY NEED TO MOVE FROM MANUAL TO AUTOMATED SYSTEMS?
A: Labor and capacity concerns have forced companies to consider automated alternatives. With the growing adoption of robotic technology, there are also proven quantifiable metrics that companies can examine to determine the business case for adopting robotic solutions. Total cost of ownership, reduction of human error and associated savings, space constraints, leveraging existing facilities, time-to-value, and return on investment (ROI) are all key performance indicators that have demonstrated improvements with robotic implementation.
In addition, the changes for the workforce are important. Removing repetitive and difficult job tasks from workers and elevating them to manage robotic fleets creates value for that workforce and the employer. Another driver for investment in automation is customer expectations and service-level demands, such as 100% accuracy, and quality and speed of delivery. As more robotic solutions are deployed, these measurable objectives will only be more prevalent for decision-makers.
Q: WHAT TYPES OF ROBOTICS APPLICATIONS ARE ATTRACTING THE MOST INTEREST FROM DISTRIBUTORS?
A: With the tremendous rise in e-commerce and direct-to-consumer purchasing habits, goods-to-person picking (GTP) and autonomous mobile robot (AMR) unit sortation have become a key focus for fulfillment and distribution centers. The deployment of automated storage and retrieval systems (AS/RS) is a major trend and can help companies cope with space and labor constraints.
Sortation systems that allow large batch picks with the sortation devices getting the items to the right order represent another major trend, and AMRs are filling that need. A new trend that is becoming prevalent is combining these solutions into a more effective and end-to-end solution for fulfillment.
Q: IN WHAT WAYS DO ROBOTICS SYSTEMS HELP COMPANIES SCALE THEIR TRANSITIONS TO AUTOMATION?
A: The most advantageous robotic solutions provide flexibility for the facility’s operations. Solutions that allow robots to be added for peak times or as a company’s operations grow give a company the ability to purchase what it needs today without sacrificing the ability to adapt for future growth. The ability to integrate robotic systems as operational needs change, implement solutions with a strong ROI, and create a better work environment for workers is necessary in today’s climate.
An example would be to add one type of system today, say, the Tompkins Robotics tSort AMR sortation system. For a company new to automation, this “point of entry” would allow it to introduce robotic technology on a limited budget, within a small space, and with minimal technical resources, training, or management requirements. Then after a few months, it could add robotic induction or a GTP solution to bring the items to sortation that would further enhance productivity and ROI. This allows the company to demonstrate efficiency and introduce robotic technology without wholesale changes or a large upfront capital investment.
Q: ARE THERE PRACTICAL LIMITS TO THE AMOUNT OF AUTOMATION CUSTOMERS SHOULD HAVE IN THEIR FACILITIES AND WHAT DETERMINES THAT?
A: The only real limits to automation are set by company leadership and not being visionary. Some leaders are fearful of change, apprehensive of new technology, or perceive robotics as a risk. However, others view robotics in their supply chain as having the potential to increase margins through lower fulfillment costs and provide strategic advantage over market competition.
The automation market has matured, and robust solutions are available. For example, robotic AS/RS systems are in approximately 1,000 sites, and the number of AMR sortation robots deployed exceeds 20,000. There are CapEx, lease, and OpEx (robots-as-a-service or RaaS) options available in the market. The perception that automation is a long journey and creates inflexibility in the supply chain is a misconception. Defining the range of the requirements anticipated for your company, researching the solutions to find the right one, and verifying that firm can deliver will allow you to select a supplier that will make the project a success. Provided you find the right fit, there should be very few limits on the ability to automate.
Q: WHAT KINDS OF ROBOTICS DESIGNS WILL WE SEE BY 2030?
A: There will be a continued push toward flexible, scalable, compatible, and modular solutions. Gone are the days of large, expensive fixed solutions that must be built for growth projections five and 10 years out. The market changes, new channels come about, dynamic and fluid things occur. We only have to look at the past 2.5 years to see dramatic evidence of this. Operators require the ability to change as market events and their customers’ needs and buying habits change.
Tompkins Robotics has always challenged our entire company, led by our product development and software teams, to provide solutions that can be moved to new facilities, expand with our customers’ needs, maintain an open API [application programming interface] software for integration with partners’ or existing customers’ systems, and develop new products and services. There will also be more of a push to move from manual and traditional automation to the world of robotic automation. The future is a fleet of robots doing the same work as humans or the fixed, inflexible systems of the past. It is not a matter of if; it is a matter of when. And now is when the change is gaining momentum. This is the future.
What happens when your warehouse technology upgrade turns into a complete process overhaul? That may sound like a headache to some, but for leaders at paper crafting company Stampin’ Up! it’s been a golden opportunity—especially when it comes to boosting productivity. The Utah-based direct marketing company has increased its average pick rate by more than 70% in the past year and a half. And it’s all due to a warehouse management system (WMS) implementation that opened the door to process changes and new technologies that are speeding its high-velocity, high-SKU (stock-keeping unit) order fulfillment operations.
The bottom line: Stampin’ Up! is filling orders faster than ever before, with less manpower, since it shifted to an easy-to-use voice picking system that makes adapting to seasonal product changes and promotions a piece of cake. Here’s how.
FACING UP TO CHANGE
Stampin’ Up!’s business increased rapidly in 2020, when pandemic-era lockdowns sparked a surge in online orders for its crafting and scrapbooking supplies—everything from rubber stamps to specialty papers, ink, and embellishments needed for home-based projects. At around the same time, company leaders learned that the WMS in use at its main distribution center (DC) in Riverton, Utah, was nearing its end-of-life and would have to be replaced. That process set in motion a series of changes that would upend the way Stampin’ Up! picked items and filled orders, setting the company on a path toward continuous improvement.
“We began a process to replace the WMS, with no intent to do anything else,” explains Rich Bushell, the company’s director of global distribution services. “But when we started to investigate a new WMS, we began to look at the larger picture. We saw problems within our [picking] system. Really, they were problems with our processes.”
Stampin’ Up! had hired global supply chain consulting firm Argon & Co. to help with the WMS selection and implementation, and it was that process that sparked the change. Argon & Co. Partner Steve Mulaik, who worked on the project, says it quickly became clear that Stampin’ Up!’s zone-based pick-and-pass fulfillment process wasn’t working well—primarily because pickers spent a lot of idle time waiting for the next order. Under the old system, which used pick-to-light technology, workers stood in their respective zones and made picks only from their assigned location; when it came time for a pick, the system directed them where to make that pick via indicator lights on storage shelves. The workers placed the picked items directly into shipping boxes that would be passed to the next zone via conveyor.
“The business problem here was that they had a system that didn’t work reliably,” Mulaik explains. “And there were periods when [workers] would have nothing to do. The workload was not balanced.”
This was less than ideal for a DC facing accelerating demand for multi-item orders—a typical Stampin’ Up! order contains 17 to 21 items per box, according to Bushell. In a bid to make the picking process more flexible, Mulaik suggested eliminating the zones altogether and changing the workflow. Ultimately, that would mean replacing the pick-to-light system and revamping the pick-and-pass process with a protocol that would keep workers moving and orders flowing consistently.
“We changed the whole process, building on some academic work from Georgia Tech along with how you communicate with the system,” Mulaik explains. “Together, that has really resulted in the significant change in productivity that they’ve seen.”
RIGHTING THE SHIP
The Riverton DC’s new solution combines voice picking technology with a whole new process known as “bucket brigade” picking. A bucket brigade helps distribute work more evenly among pickers in a DC: Pickers still work in a production-line fashion, picking items into bins or boxes and then sending the bins down the line via conveyor. But rather than stop and wait for the next order to come to them, pickers continue to work by walking up to the next person on the line and taking over that person’s assignment; the worker who is overtaken does the same, creating a process in which pickers are constantly filling orders and no one is picking from the same location.
Stampin’ Up! doesn’t follow the bucket brigade process precisely but has instead developed its own variation the company calls “leapfrog.” Instead of taking the next person’s work, pickers will move up the line to the next open order after completing a task—“leapfrogging” over the other pickers in the line to keep the process moving.
“We’re moving to the work,” Bushell explains. “If your boxes are full and you push them [down the line], you just move to the open work. The idea is that it takes the zones away; you move to where the next pick is.”
The voice piece increases the operation’s flexibility and directs the leapfrog process. Voice-directed picking allows pickers to listen to commands and respond verbally via a headset and handheld device. All commands filter through the headset, freeing the worker’s eyes and hands for picking tasks. Stampin’ Up! uses voice technology from AccuSpeechMobile with a combination of company-issued Android devices and Bluetooth headsets, although employees can use their own Bluetooth headsets or earbuds if they wish.
Mulaik and Bushell say the simplicity of the AccuSpeechMobile system was a game-changer for this project. The device-based system requires no voice server or middleware and no changes to a customer’s back-end systems in order to operate. It uses “screen scrape” technology, a process that allows the collection of large volumes of data quickly. Essentially, the program translates textual information from the device into audible commands telling associates what to pick. Workers then respond verbally, confirming the pick.
“AccuSpeech takes what the [WMS] says and then says it in your ear,” Bushell explains. “The key to the device is having all the data needed to make the pick shown on the screen. However, the picker should never—or rarely—need to look at the screen [because] the voice tells them the info and the commands are set up to repeat if prompted. This helps increase speed.
“The voice piece really ties everything together and makes our system more efficient.”
And about that system: Stampin’ Up! chose a WMS from technology provider QSSI, which directs all the work in the DC. And the conveyor systems were updated with new equipment and controls—from ABCO Systems and JR Controls—to keep all those orders moving down the line. The company also adopted automated labeling technology and overhauled its slotting procedure—the process of determining the most efficient storage location for its various items—as part of the project.
MISSION ACCOMPLISHED
Productivity improvement in the DC has been the biggest benefit of the project, which was officially completed in the spring of 2023 but continues to bear fruit. Prior to the change, Stampin’ Up! workers averaged 160 picks per hour, per person. That number rose to more than 200 picks per hour within the first few months, according to Bushell, and was up to 276 picks per hour as of this past August—a more than 70% increase.
“We’ve seen some really good gains,” Bushell says, adding that the company has reduced its reliance on both temporary and full-time staff as well, the latter mainly through attrition. “Overall, we’re 20% to 25% down on our labor based on the change …. And it’s because we’re keeping people busy.”
Quality has stayed on par as well, something Bushell says concerned him when switching from the DC’s previous pick-to-light technology.
“You have very good quality with pick-to-light, so we [worried] about opening the door to errors with pick-to-voice because a human is confirming each pick,” he says. “But we average about one error per 3,300 picks. So the quality is really good.”
On top of all that, Bushell says employees are “really happy” with the new system. One reason is that the voice system is easy to learn—so easy, anyone can do it. Stampin’ Up! runs frequent promotions and special offers that create mini spikes in business throughout the year; the new system makes it easy to get the required temporary help up to speed quickly or recruit staff members from other departments to accommodate those spikes.
“We [allocate] three days of training for voice, but it’s really about an hour,” Bushell says, adding that some of the employees from other departments simply enjoy the change of pace and the exercise of working on the “leapfrog” bucket brigade. “I have people that sign up every day to come pick.”
Not only has Stampin’ Up! reduced downtime and expedited the picking of its signature rubber stamps, paper, and crafting supplies, but it’s also blazing a trail in fulfillment that its business partners say could serve as a model for other companies looking to crank up productivity in the DC.
“There are a lot of [companies] that have pick-and-pass systems today, and while those pick-and-pass systems look like they are efficient, those companies may not realize that people are only picking 70% of the time,” Mulaik says. “This is a way to reduce that inactivity significantly.
“If you can get 20% of your productivity back—that’s a big number.”
With its new AutoStore automated storage and retrieval (AS/RS) system, Toyota Material Handling Inc.’s parts distribution center, located at its U.S. headquarters campus in Columbus, Indiana, will be able to store more forklift and other parts and move them more quickly. The new system represents a major step toward achieving TMH’s goal of next-day parts delivery to 98% of its customers in the U.S. and Canada by 2030, said TMH North America President and CEO Brett Wood at the launch event on October 28. The upgrade to the DC was designed, built, and installed through a close collaboration between TMH, AutoStore, and Bastian Solutions, the Toyota-owned material handling automation designer and systems integrator that is a cornerstone of the forklift maker’s Toyota Automated Logistics business unit. The AS/RS is Bastian’s 100th AutoStore installation in North America.
TMH’s AutoStore system deploys 28 energy-efficient robotic shuttles to retrieve and deliver totes from within a vertical storage grid. To expedite processing, artificial intelligence (AI)-enhanced software determines optimal storage locations based on whether parts are high- or low-demand items. The shuttles, each independently controlled and selected based on shortest distance to the stored tote, swiftly deliver the ordered parts to four picking ports. Each port can process up to 175 totes per hour; the company’s initial goal is 150 totes per hour, with room to grow. The AS/RS also eliminates the need for order pickers to walk up to 10 miles per day, saving time, boosting picking accuracy, and improving ergonomics for associates.
The upgrades, which also include a Kardex vertical lift module for parts that are too large for the AS/RS and a spiral conveyor, will more than triple storage capacity, from 40,000 to 128,000 storage positions, making it possible for TMH to increase its parts inventory. Currently the DC stores some 55,000 stock-keeping units (SKUs) and ships an average of $1 million worth of parts per day, reaching 80% of customers by two-day ground delivery. A Sparck Technologies CVP Impack fit-to-size packaging machine speeds packing and shipping and is expected to save up to 20% on the cost of packing materials.
Distribution, manufacturing expansion on the agenda
The Columbus parts DC currently serves all of the U.S. and Canada; inventory consists mostly of Toyota’s own parts as well as some parts for Bastian Solutions and forklift maker The Raymond Corp., which is part of TMH North America. To meet the company’s goal of next-day delivery to virtually all parts customers, TMH is exploring establishing up to five additional parts DCs. All will be TMH-designed, owned, and operated, with varying levels of automation to meet specific needs, said Bret Bruin, vice president, aftermarket sales and operations, in an interview.
Parts distribution is not the only area where TMH is investing in expanded capacity. With demand for electric forklifts continuing to rise, the company recently broke ground for a new factory on the expansive Columbus campus that will benefit both Toyota and Raymond. The two OEMs—which currently have only 5% overlap among their customers—already manufacture certain forklift models and parts for each other, said Wood in an interview. Slated to open in 2026, the $100 million, 295,000-square-foot factory will make electric-powered forklifts. The lineup will include stand-up rider trucks, currently manufactured for both brands by Raymond in Greene, New York. Moving production to Columbus, Wood said, will not only help both OEMs keep up with fast-growing demand for those models, but it will also free up space and personnel in Raymond’s factory to increase production of orderpickers and reach trucks, which it produces for both brands. “We want to build the right trucks in the right place,” Wood said.
Editor's note:This article was revised on November 4 to correct the types of equipment produced in Raymond's factory.
“The latest data continues to show some positive developments for the freight market. However, there remain sequential declines nationwide, and in most regions,” Bobby Holland, U.S. Bank director of freight business analytics, said in a release. “Over the last two quarters, volume and spend contractions have lessened, but we’re waiting for clear evidence that the market has reached the bottom.”
By the numbers, shipments were down 1.9% compared to the previous quarter while spending dropped 1.4%. This was the ninth consecutive quarterly decrease in volume, but the smallest drop in more than a year.
Truck freight conditions varied greatly by region in the third quarter. In the West, spending was up 4.4% over the previous quarter and volume increased 1.1%. Meanwhile, in the Southeast spending declined 3.3% and shipments were down 3.0%.
“It’s a positive sign that spending contracted less than shipments. With diesel fuel prices lower, the fact that pricing didn’t erode more tells me the market is getting healthier,” Bob Costello, senior vice president and chief economist at the American Trucking Associations (ATA), said in the release.
The U.S. Bank Freight Payment Index measures quantitative changes in freight shipments and spend activity based on data from transactions processed through U.S. Bank Freight Payment, which processes more than $42 billion in freight payments annually for shippers and carriers across the U.S. The Index insights are provided to U.S. Bank customers to help them make business decisions and discover new opportunities.
Parcel giant FedEx Corp. is automating its fulfillment flows by investing in the AI robotics and autonomous e-commerce fulfillment technology firm Nimble, and announcing plans to use the San Francisco-based startup’s tech in its own returns network.
The move is significant because FedEx Supply Chain operates at a large scale, running more than 130 warehouse and fulfillment operations in North America and processing 475 million returns annually. According to FedEx, the “strategic alliance” will help to scale up FedEx Fulfillment with Nimble’s “fully autonomous 3PL model.”
“Our strategic alliance and financial investment with Nimble expands our footprint in the e-commerce space, helping to further scale our FedEx Fulfillment offering across North America,” Scott Temple, president, FedEx Supply Chain, said in a release. “Nimble’s cutting-edge AI robotics and autonomous fulfillment systems will help FedEx streamline operations and unlock new opportunities for our customers.”
According to Nimble founder and CEO Simon Kalouche, the collaboration will help enable FedEx to leverage Nimble’s “fast and cost-effective” fulfillment centers, powered by its intelligent general purpose warehouse robots and AI technology.
Nimble says that more than 90% of warehouses today still operate manually with minimal or no robotics, and even those automated warehouses use robots with limited intelligence that are restricted to just a few warehouse functions—primarily storage and retrieval. In contrast, Nimble says its “intelligent general-purpose warehouse robot” is capable of performing all core fulfillment functions including storage and retrieval, picking, packing, and sorting.
For the past seven years, third-party service provider ODW Logistics has provided logistics support for the Pelotonia Ride Weekend, a campaign to raise funds for cancer research at The Ohio State University’s Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. As in the past, ODW provided inventory management services and transportation for the riders’ bicycles at this year’s event. In all, some 7,000 riders and 3,000 volunteers participated in the ride weekend.
Photo courtesy of Dematic
For the past four years, automated solutions provider Dematic has helped support students pursuing careers in the STEM (science, technology, engineering, and mathematics) fields with its FIRST Scholarship program, conducted in partnership with the corporate nonprofit FIRST (For Inspiration and Recognition of Science and Technology). This year’s scholarship recipients include Aman Amjad of Brookfield, Wisconsin, and Lily Hoopes of Bonney Lake, Washington, who were each awarded $5,000 to support their post-secondary education. Dematic also awarded $1,000 scholarships to another 10 students.
Motive, an artificial intelligence (AI)-powered integrated operations platform, has launched an initiative with PGA Tour pro Jason Day to support the Navy SEAL Foundation (NSF). For every birdie Day makes on tour, Motive will make a contribution to the NSF, which provides support for warriors, veterans, and their families. Fans can contribute to the mission by purchasing a Jason Day Tour Edition hat at https://malbongolf.com/products/m-9189-blk-wht-black-motive-rope-hat.
MTS Logistics Inc., a New York-based freight forwarding and logistics company, raised more than $120,000 for autism awareness and acceptance at its 14th annual Bike Tour with MTS for Autism. All proceeds from the June event were donated to New Jersey-based nonprofit Spectrum Works, which provides job training and opportunities for young adults with autism.