Once viewed as a commodity, storage rack systems have taken their rightful place in the warehousing world as specialized, engineered systems designed with worker protection and high productivity in mind.
Victoria Kickham, an editor at large for Supply Chain Quarterly, started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for Supply Chain Quarterly's sister publication, DC Velocity.
Storage racks are an essential part of any warehouse, their layout and design a considerable undertaking no matter what a facility’s size or purpose. As systems become more complex to handle growth in e-commerce and a generally faster-paced business environment, they are also taking on a higher profile when it comes to safety and efficiency. A poorly designed rack system can fail on many fronts, including potentially causing worker injury if it can’t properly support the items it’s designed to hold. A well-designed system, by contrast, can protect workers from the danger of falling items or rack collapses and also help streamline the flow of products through the facility.
“[Storage] racking went from being almost a commodity to now being highly engineered,” observes Arlin Keck, corporate R&D engineer for rack manufacturerSteel King, emphasizing worker safety as the main reason for the change. “Everything has evolved over time.”
Today, racking system designers must take into account a range of factors when planning a system, including the geographic location of the project, maximum pallet size and the weight of the items being stored, facility layout and design, and the customer’s preferred style or type of racking. Doing so allows designers to create the best possible system for the operation.
Here’s a look at some key considerations to keep in mind when designing or redesigning your storage rack system with an eye toward safety and efficiency.
DESIGN FOR EFFICIENCY
Designing a storage rack system begins with some important questions, according to Joe Rooney, vice president ofBaker Industrial Supply, a Texas-based supplier of retail and warehouse storage products. The process starts with an assessment of the type of facility you’re running—a retail operation, warehouse, manufacturing facility, or e-commerce distribution center, for instance—as well as the types of products being stored and moved, referred to as “loads.” Loads can include products stored on pallets as well as hand-stacked items and boxes. As an example, a typical eight-foot-long rack shelf usually has two pallets stored on each shelf; the combined weight of those two pallets and the product on those pallets makes up the “load” on that shelf.
This catwalk uses Hannibal Industries' TubeRack, which is designed specifically to withstand the dangers of seismic events, according to the company.
Next, designers must take into account various specifications and guidelines. Dave Olson, national sales manager for racking system manufacturerRidg-U-Rak, says designers must base their design on specifications from the Rack Manufacturers Institute (RMI), an industry group within the material handling trade association MHI that provides guidelines and standards for storage racks. In addition, he says, they must ensure the design meets both local and international building codes.
Rooney adds that workflow is another important consideration.
“We also have to consider how [the customer] wants to move [the items]. For a distribution center, it’s about speed. For manufacturers, speed and throughput are not as important,” he explains. “Design has gone from ‘I’ve got this 48-by-40 pallet and I need to store 600 of them and put them on this wall’ to having more of a process. Today, we say ‘Let’s look at your space and see how you can effectively and efficiently move this material.”
Depending on the operation, that may entail a basic pallet rack design, or it may require racking that is part of an automated storage and retrieval system (AS/RS). Either way, the planning and preparation begin with the same initial questions.
“The key thing for any rack system design is the customer’s knowing its product, the mix and usage of SKUs (stock-keeping units), and how it wants to operate its warehouse,” explains Olson, adding that designers and warehouse operators must also consider the type of material handling equipment used in the facility, the type of loads being handled, and the volume of product moving in and out daily. “The customer knowing his needs is critical to formulating the proper rack system and layout—that’s where you start.”
PUT SAFETY FIRST
Designing for safety means ensuring that your rack system will stand up to internal operational damage from forklifts and other material handling equipment as well as external threats, such as earthquakes or hurricanes. Both types of threats require attention in the early stages of design to ensure both an adequate and a safe rack system.
“If [you go] back far enough in the history of racking, racking was treated like an off-the-shelf commodity with few if any design or safety regulations,” explains Steel King’s Keck. “Today, racking is a highly engineered and regulated product with design and safety requirements listed in all state building codes.”
To meet those requirements, designers must account for all loading conditions, which include the size and weight of items being stored and moved, the complexity of the racking structure being used, and seismic conditions and the location of the racking itself (indoors or out, for instance). More complex racking structures can sometimes include a mix of different structures like pick modules, multilevel platforms, and stairways—all of which can affect the load on the entire system.
In addition to adhering to building codes, rack system designers and installers will often recommend extra safety measures to protect against other types of damage and injury. Special structures can help protect against internal damage from forklifts, for example. These can include a variety of rack column protectors, end-of-aisle protectors, free-standing guard railing, pallet support bars, beam safety locks, safety netting, load plaques (affixed to racks as a reminder of their load capacity), and so on. Wire-guided vehicles can help as well; these are very narrow-aisle (VNA) forklifts that use an electromechanical system to control steering. The system is guided by an energized wire secured in the floor. Such systems help boost forklift driver confidence in narrow aisles at increased heights, helping to reduce the risk of a forklift’s hitting and damaging the racking, according to Rooney.
Reinforcing racks to withstand external threats is trickier and can involve advanced rack designs. Today, designing for seismic conditions is a part of almost every project, explains Olson. Extra steps can include using base isolation systems, which help dissipate the seismic energy exerted on a rack system during an earthquake. Olson points to Ridg-U-Rak’s “Pellegrino” base isolation system as an example. The system includes a base isolation unit that is positioned between the upright frame and the floor. The frame is attached to the base isolator, which is in turn anchored to the floor, allowing the rack structure itself to move relative to the floor. The aim is to add flexibility and allow dissipation of the seismic energy exerted on the rack system during an earthquake.
“Designs that incorporate flexibility [are important],” Olson explains, adding that structures that can provide both flexibility and strength help the entire system to flex and move. Such design features can help keep racks from “shedding” their loads, a term used to describe items falling off of a racking system.
Tubular design structures are the newest innovation to add the flexibility needed to withstand seismic events. Andrew Kirby ofHannibal Industries created a product called TubeRack specifically to withstand the dangers of seismic events; he says it was designed to save lives and was inspired by the continuously changing building codes that make it hard for warehouse operators to meet both safety requirements and profitability goals.
“We needed to change something,” says Kirby, an engineer and 30-year industry veteran. “So we came up with a solution to use a system that is flexible yet capable of supporting [a system’s] design weight when displaced. The best way to protect yourself from an earthquake is to allow the product and the pallet racking to move together. That’s what kills people—falling product.”
“The best way to protect yourself from an earthquake is to allow the product and the pallet racking to move together,” says Andrew Kirby of Hannibal Industries.
TubeRack is made from structural steel tubing and is designed to support heavier loads with less steel on lighter slabs. Its modular design eliminates the diagonal braces that connect the front and rear columns of a traditional system, helping to dissipate the energy exerted on the racking during an earthquake. This creates a less rigid system that allows the entire rack to move and flex in the direction of the seismic waves.
“With TubeRack, we take out those diagonals so we add flexibility. We let [the rack] move in the direction that the load is applied,” says Kirby, using a simple example to illustrate his point: The force of an impact between two people walking toward each other down the street is considerably stronger than the force of an impact between two people walking in the same direction. Removing the rigid diagonal beam essentially creates the latter scenario.
“The difference is in how the energy is dissipated,” Kirby says, adding that TubeRack lowers the potential for product shed during a seismic event or impact by up to 70%.
Kirby says it’s also important to leave enough space between the racking and the building to allow for movement. Other seismic recommendations include storing your tallest and heaviest loads at or near the bottom of the rack and avoiding low-friction pallets, such as those made out of plastic, to keep things from sliding around.
INSPECT FOR DAMAGE
Regardless of the threat, experts point to regular inspection and repair of damage as an essential part of maintaining rack system integrity.
“Problems can be exacerbated substantially with damaged frames or beams not properly engaged and locked,” Olson explains.
Keck adds that forklift operators should report any impacts or damage to racking immediately to allow for inspection and repair. Such policies should be encouraging, not punitive, to avoid incidents going unreported.
“If someone damages a rack, they can’t be reprimanded all the time. You have to have a program that ‘eases’ the reporting of those incidents,” Keck explains. “Workers should be encouraged to report any damaged parts or missing hardware. At a minimum, a complete rack walk-through/inspection should be done once a year.”
Many companies will do more frequent formal inspections—quarterly or even monthly—but the experts emphasize that continuous monitoring by all warehouse or distribution center staff is important. On top of that, Kirby recommends conducting a complete re-evaluation of a system every three years to make sure it continues to be safe and meet a business’s changing demands.
In the end, it all circles back to safety.
“These things are important,” he says. “[You need to] safeguard the product, and by safeguarding the product, you safeguard the people.”
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.
The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.
According to Starboard, the logistics industry is under immense pressure to adapt to the growing complexity of global trade, which has hit recent hurdles such as the strike at U.S. east and gulf coast ports. That situation calls for innovative solutions to streamline operations and reduce costs for operators.
As a potential solution, Starboard offers its flagship product, which it defines as an AI-based transportation management system (TMS) and rate management system that helps mid-sized freight forwarders operate more efficiently and win more business. More broadly, Starboard says it is building the virtual infrastructure for global trade, allowing freight companies to leverage AI and machine learning to optimize operations such as processing shipments in real time, reconciling invoices, and following up on payments.
"This investment is a pivotal step in our mission to unlock the power of AI for our customers," said Sumeet Trehan, Co-Founder and CEO of Starboard. "Global trade has long been plagued by inefficiencies that drive up costs and reduce competitiveness. Our platform is designed to empower SMB freight forwarders—the backbone of more than $20 trillion in global trade and $1 trillion in logistics spend—with the tools they need to thrive in this complex ecosystem."