Ben Ames has spent 20 years as a journalist since starting out as a daily newspaper reporter in Pennsylvania in 1995. From 1999 forward, he has focused on business and technology reporting for a number of trade journals, beginning when he joined Design News and Modern Materials Handling magazines. Ames is author of the trail guide "Hiking Massachusetts" and is a graduate of the Columbia School of Journalism.
Ever since the founding of warehouse robotics pioneer Kiva Systems in 2003, observers have compared its rolling orange bots to various types of athletes and pop culture figures—hockey players, ballet dancers, Pac-Man from the world of video games, and even cartoon “Minions” from the “Despicable Me” movies.
But despite that focus on the bots’ physical prowess, many experts say the true strength of what we now call autonomous mobile robots (AMRs) is their intelligence. While warehouse visitors today may be entranced by the robots’ ability to move tangible goods, the magic actually lies in the software that enables AMRs to avoid collisions, analyze traffic, steer clear of bottlenecks, and show awareness of their surroundings—in a word, to think.
Once truly groundbreaking, goods-to-person automation is now “table stakes” for the AMR industry, says Jerome Dubois, co-founder and co-CEO of 6 River Systems, a Massachusetts-based robot maker that was acquired in 2019 by the e-commerce platform Shopify. “The Kiva robot itself was innovative, but it was a fairly simple device,” he says. “Software is now driving the acceleration and the value that people are realizing from robotics, with algorithms for replenishment, slotting, work assignments, and workflows.”
In Dubois’ view, the chief strength of AMRs—essentially, what enables them to accelerate the flow of goods through the warehouse—is their awareness of how inventory is stored and allocated, as opposed to their physical capabilities, such as how fast they move, how much weight they can carry, or how safely they operate.
“Back in 2017 when we launched our AMR [a collaborative robot called “Chuck”], we had three times [more] software engineers than hardware engineers. And today that number is four times,” he says. “Not that it’s easier to make the hardware, but with software, there is more potential, opportunity, doors to unlock. We love Chuck, but it doesn’t do anything without the software.”
As for what opportunities the company’s software engineers are currently exploring, it’s all about making each interaction more efficient, Dubois says.
“For any goods-to-person robot, the more work it can accomplish per hour of runtime, the more benefit you get,” he explains. “So our goal is to figure out how to get more work assigned to a Chuck as it moves from A to B to C; how many picks we can get off a shelf or from a tote at one time; or how else we can do this work so each move is as task-heavy as possible.”
PLAYING WELL WITH OTHERS
In fact, an AMR’s greatest contribution to the fulfillment workflow may lie in its ability to streamline handoffs and interactions all the way down the line. Just as AMR intelligence can enhance productivity inside a DC, it can also help speed the movement of products through a larger network that includes multiple fulfillment centers and retail stores, says Akash Gupta, co-founder and CTO of GreyOrange, an Atlanta-based warehouse automation and robotics vendor.
Today’s complex distribution networks require pinpoint-accurate visibility over inventory at every node, he explains, adding that AMRs can help meet that need by providing a constant flow of data as they move goods, count units, run analytics, and track exceptions.
“It requires lots of intelligence because before you can think about executing the work by robots, you need to communicate between nodes, and you need to support a large number of both robotic and nonrobotic devices,” Gupta says. “Maybe in 10 years, we’ll have fully autonomous warehouses, but in the next five to seven years, a large portion of DCs will use a combination of autonomous, semi-autonomous (robot-assisted), and manual operations. So the software needs to be flexible enough to send real-time feedback” to all the players, he says.
AMR intelligence can enhance productivity inside a DC and help speed the movement of products through a larger network that includes multiple fulfillment centers and retail stores, says Akash Gupta of robotics vendor GreyOrange.
That need for software flexibility also comes into play in DCs that use equipment from multiple vendors, adds Sean Elliott, CTO for software at Körber Supply Chain, a German supply chain technology solution developer. Many DCs today include robots from a variety of suppliers, each one assigned to different tasks, he says. A company might use one brand of robot to pick and palletize goods, another to move loaded pallets, and a third to load them on trucks. In that kind of operation, companies rely on software to handle the “decisioning” process, assign each robot to its own specialty, and optimize the workflow.
ROBOTS GET SELF-AWARE
Faced with that complex mission, AMRs need the ability to focus on multiple goals at once: completing their immediate job of moving goods, communicating with other robots to ensure that handoffs happen on time, and reporting the results of every step to the software that oversees the network.
If that profile sounds almost like a human employee’s job description, that’s because it is. And the comparisons don’t end there. Like humans, robots perform best when they’re “aware” of their own strengths and weaknesses in the same way human workers are, Elliott says. For instance, that might mean the AMR is able to communicate how much battery charge it has left or respond to a query about its payload capacity.
Robots focused only on lifting and moving goods would not be able to answer those questions, much less collaborate with other bots and human workers, plot routes through bustling warehouses, or generate continuous streams of inventory-tracking data.
In an industry that relied for decades on hard-working laborers with clipboards and pencils, the addition of robotic teammates with precision intelligence promises to trigger a revolution in fulfillment efficiency and operational awareness. And in appreciation of AMRs’ growing brainpower, the sector may have to abandon old comparisons to dancers and skaters, and adopt new terminology that reflects the robots’ “smarts.” Or maybe we can just hang diplomas on each robot’s frame and applaud as it rolls into the DC.
The Port of Oakland has been awarded $50 million from the U.S. Department of Transportation’s Maritime Administration (MARAD) to modernize wharves and terminal infrastructure at its Outer Harbor facility, the port said today.
Those upgrades would enable the Outer Harbor to accommodate Ultra Large Container Vessels (ULCVs), which are now a regular part of the shipping fleet calling on West Coast ports. Each of these ships has a handling capacity of up to 24,000 TEUs (20-foot containers) but are currently restricted at portions of Oakland’s Outer Harbor by aging wharves which were originally designed for smaller ships.
According to the port, those changes will let it handle newer, larger vessels, which are more efficient, cost effective, and environmentally cleaner to operate than older ships. Specific investments for the project will include: wharf strengthening, structural repairs, replacing container crane rails, adding support piles, strengthening support beams, and replacing electrical bus bar system to accommodate larger ship-to-shore cranes.
Commercial fleet operators are steadily increasing their use of GPS fleet tracking, in-cab video solutions, and predictive analytics, driven by rising costs, evolving regulations, and competitive pressures, according to an industry report from Verizon Connect.
Those conclusions come from the company’s fifth annual “Fleet Technology Trends Report,” conducted in partnership with Bobit Business Media, and based on responses from 543 fleet management professionals.
The study showed that for five consecutive years, at least four out of five respondents have reported using at least one form of fleet technology, said Atlanta-based Verizon Connect, which provides fleet and mobile workforce management software platforms, embedded OEM hardware, and a connected vehicle device called Hum by Verizon.
The most commonly used of those technologies is GPS fleet tracking, with 69% of fleets across industries reporting its use, the survey showed. Of those users, 72% find it extremely or very beneficial, citing improved efficiency (62%) and a reduction in harsh driving/speeding events (49%).
Respondents also reported a focus on safety, with 57% of respondents citing improved driver safety as a key benefit of GPS fleet tracking. And 68% of users said in-cab video solutions are extremely or very beneficial. Together, those technologies help reduce distracted driving incidents, improve coaching sessions, and help reduce accident and insurance costs, Verizon Connect said.
Looking at the future, fleet management software is evolving to meet emerging challenges, including sustainability and electrification, the company said. "The findings from this year's Fleet Technology Trends Report highlight a strong commitment across industries to embracing fleet technology, with GPS tracking and in-cab video solutions consistently delivering measurable results,” Peter Mitchell, General Manager, Verizon Connect, said in a release. “As fleets face rising costs and increased regulatory pressures, these technologies are proving to be indispensable in helping organizations optimize their operations, reduce expenses, and navigate the path toward a more sustainable future.”
Businesses engaged in international trade face three major supply chain hurdles as they head into 2025: the disruptions caused by Chinese New Year (CNY), the looming threat of potential tariffs on foreign-made products that could be imposed by the incoming Trump Administration, and the unresolved contract negotiations between the International Longshoremen’s Association (ILA) and the U.S. Maritime Alliance (USMX), according to an analysis from trucking and logistics provider Averitt.
Each of those factors could lead to significant shipping delays, production slowdowns, and increased costs, Averitt said.
First, Chinese New Year 2025 begins on January 29, prompting factories across China and other regions to shut down for weeks, typically causing production to halt and freight demand to skyrocket. The ripple effects can range from increased shipping costs to extended lead times, disrupting even the most well-planned operations. To prepare for that event, shippers should place orders early, build inventory buffers, secure freight space in advance, diversify shipping modes, and communicate with logistics providers, Averitt said.
Second, new or increased tariffs on foreign-made goods could drive up the cost of imports, disrupt established supply chains, and create uncertainty in the marketplace. In turn, shippers may face freight rate volatility and capacity constraints as businesses rush to stockpile inventory ahead of tariff deadlines. To navigate these challenges, shippers should prepare advance shipments and inventory stockpiling, diversity sourcing, negotiate supplier agreements, explore domestic production, and leverage financial strategies.
Third, unresolved contract negotiations between the ILA and the USMX will come to a head by January 15, when the current contract expires. Labor action or strikes could cause severe disruptions at East and Gulf Coast ports, triggering widespread delays and bottlenecks across the supply chain. To prepare for the worst, shippers should adopt a similar strategy to the other potential January threats: collaborate early, secure freight, diversify supply chains, and monitor policy changes.
According to Averitt, companies can cushion the impact of all three challenges by deploying a seamless, end-to-end solution covering the entire path from customs clearance to final-mile delivery. That strategy can help businesses to store inventory closer to their customers, mitigate delays, and reduce costs associated with supply chain disruptions. And combined with proactive communication and real-time visibility tools, the approach allows companies to maintain control and keep their supply chains resilient in the face of global uncertainties, Averitt said.
Bloomington, Indiana-based FTR said its Trucking Conditions Index declined in September to -2.47 from -1.39 in August as weakness in the principal freight dynamics – freight rates, utilization, and volume – offset lower fuel costs and slightly less unfavorable financing costs.
Those negative numbers are nothing new—the TCI has been positive only twice – in May and June of this year – since April 2022, but the group’s current forecast still envisions consistently positive readings through at least a two-year forecast horizon.
“Aside from a near-term boost mostly related to falling diesel prices, we have not changed our Trucking Conditions Index forecast significantly in the wake of the election,” Avery Vise, FTR’s vice president of trucking, said in a release. “The outlook continues to be more favorable for carriers than what they have experienced for well over two years. Our analysis indicates gradual but steadily rising capacity utilization leading to stronger freight rates in 2025.”
But FTR said its forecast remains unchanged. “Just like everyone else, we’ll be watching closely to see exactly what trade and other economic policies are implemented and over what time frame. Some freight disruptions are likely due to tariffs and other factors, but it is not yet clear that those actions will do more than shift the timing of activity,” Vise said.
The TCI tracks the changes representing five major conditions in the U.S. truck market: freight volumes, freight rates, fleet capacity, fuel prices, and financing costs. Combined into a single index indicating the industry’s overall health, a positive score represents good, optimistic conditions while a negative score shows the inverse.
Specifically, the new global average robot density has reached a record 162 units per 10,000 employees in 2023, which is more than double the mark of 74 units measured seven years ago.
Broken into geographical regions, the European Union has a robot density of 219 units per 10,000 employees, an increase of 5.2%, with Germany, Sweden, Denmark and Slovenia in the global top ten. Next, North America’s robot density is 197 units per 10,000 employees – up 4.2%. And Asia has a robot density of 182 units per 10,000 persons employed in manufacturing - an increase of 7.6%. The economies of Korea, Singapore, mainland China and Japan are among the top ten most automated countries.
Broken into individual countries, the U.S. ranked in 10th place in 2023, with a robot density of 295 units. Higher up on the list, the top five are:
The Republic of Korea, with 1,012 robot units, showing a 5% increase on average each year since 2018 thanks to its strong electronics and automotive industries.
Singapore had 770 robot units, in part because it is a small country with a very low number of employees in the manufacturing industry, so it can reach a high robot density with a relatively small operational stock.
China took third place in 2023, surpassing Germany and Japan with a mark of 470 robot units as the nation has managed to double its robot density within four years.
Germany ranks fourth with 429 robot units for a 5% CAGR since 2018.
Japan is in fifth place with 419 robot units, showing growth of 7% on average each year from 2018 to 2023.