Ben Ames has spent 20 years as a journalist since starting out as a daily newspaper reporter in Pennsylvania in 1995. From 1999 forward, he has focused on business and technology reporting for a number of trade journals, beginning when he joined Design News and Modern Materials Handling magazines. Ames is author of the trail guide "Hiking Massachusetts" and is a graduate of the Columbia School of Journalism.
Pull up a truck to the dock door of a DC in 2021, and the lift truck that arrives to unload your pallets might have a driver behind the wheel ... or it might have a bundle of sensors. Inside the building, the hand reaching into a tote to retrieve an item for an order might be connected to a human laborer … or it might be attached to a mechanized arm. Over at the racks of stored goods, the bar-code scanner taking inventory might be wielded by a warehouse employee … or it might be mounted on a hovering drone.
Logistics robots are here to stay, and they're whirring around every corner of the DC, helping companies handle the surge of e-commerce orders triggered by the pandemic. But demand for warehouse robots began long before the coronavirus reached U.S. shores in 2020. Companies have been eyeing the technology for years, drawn by its potential on a number of fronts. In particular, they've been looking at robots as a way to compensate for labor shortages and help them train temp workers during peak season, match Amazon's shipping speed, and pack more inventory into their facilities.
All robots are not the same, though. Like the animals on a farm, bots come in all combinations of shape, size, speed, strength, and smarts. This primer on robotic technology can help "farmers" determine which of the many options best meets their needs.
AUTOMATED STORAGE AND RETRIEVAL SYSTEMS
An automated storage and retrieval system (AS/RS) can automate many warehouse processes by storing, delivering, tracking, and replenishing inventory through a computer-controlled process that automatically deposits and retrieves loads from set storage locations in a set of steel racks.
Installing an AS/RS is a long-term investment, requiring a substantial upfront cost, a dedicated area of the warehouse, and specialized racks and totes for many models. Furthermore, because each unit is designed for goods of a specific size and shape, these systems lack the flexibility to handle variation.
But once the unit is up and running, an AS/RS can deliver high throughput speeds, reducing the size of the workforce needed to move goods around the facility, eliminating fulfillment errors, and easily coping with inventory challenges like high SKU (stock-keeping unit) counts, high-value goods, or heavy items.
These AS/RS solutions come in many varieties, including models with cranes reaching between aisles to fetch racked goods, units with shuttles that glide above the storage racks or whir between them in three dimensions, and vertical storage carousels and vertical lift modules that store goods in a self-contained unit.
Benefits:
Maximize use of warehouse floor space by supporting dense inventory storage
Safely store high-value inventory and reduce inventory loss
Reduce labor costs by slashing the time needed to stock and retrieve goods
Deliver goods to employees at ergonomic workstations for high-speed fulfillment
Applications:
Parts storage and order picking applications
High-throughput operations that require fast picking, such as e-commerce or grocery
AUTOMATED GUIDED VEHICLES
Automated guided vehicles (AGVs) have roamed warehouse aisles for decades, carrying inventory along set routes demarcated by wires or magnets embedded in the concrete floor, bar-code stickers affixed to storage racks, or wireless signal beacons mounted on walls.
That system allows vehicles like self-driving tugs, forklifts, and pallet jacks to steer themselves between predetermined indoor locations and shuttle goods from point to point. Recent upgrades have added sensors like computer-vision cameras or LiDAR (light detection and ranging) technology to enhance their ability to detect obstacles and avoid collisions. But AGVs currently don't have the capability to change their routes, adapt to new workflows, or communicate with other vehicles to optimize the movement of materials.
However, vendors say the lines between AGVs and their cousins, autonomous mobile robots (AMRs), are beginning to blur. For example, advances in machine learning may soon allow AGVs to "think" their way around obstacles and handle new workflows.
Benefits:
Reduce labor requirements by moving inventory without requiring a vehicle driver
Avoid injuries caused by heavy lifting and repetitive motion
Save time that workers would have spent in manually moving goods
Applications:
Repetitive workflows that follow established routes
Contactless movement and storage
Round-the-clock, three-shift operations
AUTONOMOUS MOBILE ROBOTS
Autonomous mobile robots (AMRs) are similar to AGVs in that they can safely transport inventory around a warehouse, but they also include advanced features that greatly expand the variety and complexity of the tasks they can perform.
The chief differentiator between AMRs and AGVs is that AMRs do not require pre-installed infrastructure to navigate through a crowded warehouse. Instead, they use an array of sensors to detect, map, and memorize the facility's features, using approaches like simultaneous localization and mapping (SLAM) technology. And they do it all while avoiding obstacles with real-time reflexes; communicating with other AMRs, warehouse management systems (WMS), and other software platforms; and even collaborating with human employees on picking and fulfillment tasks.
As one of the fastest-developing types of warehouse technology, AMRs seem to gain new capabilities every year. Many models can make their own map of an unfamiliar warehouse, then share that map with other robots, enabling companies to scale up their operations by simply rolling additional AMRs onto the floor, avoiding setup and installation hassles. Other models can use cloud-based software to optimize their path through the warehouse, detecting traffic jams or blockages and choosing new routes to get the job done faster.
The progenitor of this class was a squat orange robot developed by Kiva Systems to carry racks of goods to waiting human workers in what's known as a goods-to-person workflow. The technology worked so well that it was promptly taken off the market after Amazon.com purchased the company in 2012 and took it private.
But generations of new models have followed. Some have replicated the original Kiva design, while others have added new capabilities and attachments, such as spinning table-top belts for sliding parcels on and off conveyors, and tablet computers for communicating with human workers.
Other AMRs known as autonomous picking carts—or zone picking robots—operate on a robot-to-goods model. In that workflow, they automatically meet up with warehouse associates at specific racks or aisles, provide instructions on which goods to pick and which tote to place them in, and then whisk the completed order to another staffer at a packing station.
Benefits:
Support social distancing in warehouses by shuttling between workers
Reduce travel distances for DC order pickers
Enable workers to pick far more items per shift than in manual workflows, thus helping DCs cope with labor shortages and peak-season demands
Applications:
High-volume DCs that need efficient workflows
Training new hires and temp workers through tablet computers mounted on the machine
Increasing pick accuracy by delivering clear instructions via tablet PCs
AUTONOMOUS INVENTORY BOTS
Autonomous inventory bots are essentially AMRs that count inventory on shelves instead of delivering goods to people or places. Outfitted with an array of sensors—computer vision, bar-code scanners, radio-frequency identification (RFID) readers, and more—they steer themselves around indoor facilities, constantly updating the DC's records on the quantity and location of goods. Inventory bots have also been deployed in retail and grocery stores, where inventory records are notoriously inaccurate.
Benefits:
Provide inventory counts that are more accurate than humans' counts
Avoid out-of-stock items by constantly updating records
Allow inventory counts to be conducted at any hour, such as during late-night shifts when the building is empty
Applications:
Tracking jumbled goods on retail and grocery shelves
Counting inventory in large warehouses
ROBOTIC PICKING ARMS
Robotic picking arms have long been a familiar sight in industrial factories, where they perform precision tasks in automobile assembly or electronics manufacturing operations. But they're a relatively new entrant into the world of distribution operations, where they're starting to attract interest for their potential to boost fulfillment speed and accuracy.
Each unit includes a robotic arm with multiple joints and some type of "hand," known in the business as an "end-effector." The end-effector typically includes grasping fingers, suction cups, or some combination of the two, allowing it to seize objects ranging from the heavy (boxes on a pallet) to the light (garments packed in a plastic bag or small each-picks in a tote). Robotic arms rely on computer-vision sensors and artificial intelligence (AI) to help them recognize specific items and determine the best way to grasp them.
Benefits:
Can work around the clock
Increase picking capacity
Free workers from repetitive tasks
Applications:
Receiving operations, depalletizing tasks, and placing goods on conveyors
Fulfillment tasks, such as pick, pack, and ship
Singulating cartons from a pallet onto a conveyor
DRONES
Flying drones and unmanned aerial vehicles (UAVs) are some of the latest entrants into the ranks of logistics robots, currently found mostly in pilot projects and innovation labs.
Like the birds in a forest, they vary greatly in size, speed, and capability. Some have whirring helicopter blades that allow them to hover, while other models look more like miniature propeller planes, able to soar on fixed wings.
Large warehouses might use drones indoors for inventory counting—a task they typically carry out by hovering over tall racks and scanning goods. But drones are also used out in the wider world, where they've been deployed to track trailers around truck yards, inspect infrastructure such as train tracks, and perform last-mile deliveries.
Benefits:
Provide sensor access to high warehouse racks that would otherwise be accessible only by high-reach lift trucks
Enable the delivery of small, urgently needed items such as medical supplies
Applications:
Inventory counting
Last-mile delivery of lightweight objects
ONLY THE BEGINNING
Choosing the best type of warehouse robot for your facility is a complex decision—considerations range from your budget and return on investment (ROI) goals to the condition of the building and your IT (information technology) infrastructure to labor availability in your particular market. But when you find the right solution, the benefits can be huge.
And if your perfect solution wasn't on this list, don't be discouraged. Chances are a robotics vendor somewhere is already working on a new design that will meet your needs. Recent technological advances have allowed developers to flex their creative muscle and respond to changing market conditions at almost lightning speed (think of the disinfecting bots that hit the market within weeks of the pandemic's arrival in the U.S., for example). It's safe to say robots have only just begun to find their niche in logistics.
Specifically, the new global average robot density has reached a record 162 units per 10,000 employees in 2023, which is more than double the mark of 74 units measured seven years ago.
Broken into geographical regions, the European Union has a robot density of 219 units per 10,000 employees, an increase of 5.2%, with Germany, Sweden, Denmark and Slovenia in the global top ten. Next, North America’s robot density is 197 units per 10,000 employees – up 4.2%. And Asia has a robot density of 182 units per 10,000 persons employed in manufacturing - an increase of 7.6%. The economies of Korea, Singapore, mainland China and Japan are among the top ten most automated countries.
Broken into individual countries, the U.S. ranked in 10th place in 2023, with a robot density of 295 units. Higher up on the list, the top five are:
The Republic of Korea, with 1,012 robot units, showing a 5% increase on average each year since 2018 thanks to its strong electronics and automotive industries.
Singapore had 770 robot units, in part because it is a small country with a very low number of employees in the manufacturing industry, so it can reach a high robot density with a relatively small operational stock.
China took third place in 2023, surpassing Germany and Japan with a mark of 470 robot units as the nation has managed to double its robot density within four years.
Germany ranks fourth with 429 robot units for a 5% CAGR since 2018.
Japan is in fifth place with 419 robot units, showing growth of 7% on average each year from 2018 to 2023.
Progress in generative AI (GenAI) is poised to impact business procurement processes through advancements in three areas—agentic reasoning, multimodality, and AI agents—according to Gartner Inc.
Those functions will redefine how procurement operates and significantly impact the agendas of chief procurement officers (CPOs). And 72% of procurement leaders are already prioritizing the integration of GenAI into their strategies, thus highlighting the recognition of its potential to drive significant improvements in efficiency and effectiveness, Gartner found in a survey conducted in July, 2024, with 258 global respondents.
Gartner defined the new functions as follows:
Agentic reasoning in GenAI allows for advanced decision-making processes that mimic human-like cognition. This capability will enable procurement functions to leverage GenAI to analyze complex scenarios and make informed decisions with greater accuracy and speed.
Multimodality refers to the ability of GenAI to process and integrate multiple forms of data, such as text, images, and audio. This will make GenAI more intuitively consumable to users and enhance procurement's ability to gather and analyze diverse information sources, leading to more comprehensive insights and better-informed strategies.
AI agents are autonomous systems that can perform tasks and make decisions on behalf of human operators. In procurement, these agents will automate procurement tasks and activities, freeing up human resources to focus on strategic initiatives, complex problem-solving and edge cases.
As CPOs look to maximize the value of GenAI in procurement, the study recommended three starting points: double down on data governance, develop and incorporate privacy standards into contracts, and increase procurement thresholds.
“These advancements will usher procurement into an era where the distance between ideas, insights, and actions will shorten rapidly,” Ryan Polk, senior director analyst in Gartner’s Supply Chain practice, said in a release. "Procurement leaders who build their foundation now through a focus on data quality, privacy and risk management have the potential to reap new levels of productivity and strategic value from the technology."
Businesses are cautiously optimistic as peak holiday shipping season draws near, with many anticipating year-over-year sales increases as they continue to battle challenging supply chain conditions.
That’s according to the DHL 2024 Peak Season Shipping Survey, released today by express shipping service provider DHL Express U.S. The company surveyed small and medium-sized enterprises (SMEs) to gauge their holiday business outlook compared to last year and found that a mix of optimism and “strategic caution” prevail ahead of this year’s peak.
Nearly half (48%) of the SMEs surveyed said they expect higher holiday sales compared to 2023, while 44% said they expect sales to remain on par with last year, and just 8% said they foresee a decline. Respondents said the main challenges to hitting those goals are supply chain problems (35%), inflation and fluctuating consumer demand (34%), staffing (16%), and inventory challenges (14%).
But respondents said they have strategies in place to tackle those issues. Many said they began preparing for holiday season earlier this year—with 45% saying they started planning in Q2 or earlier, up from 39% last year. Other strategies include expanding into international markets (35%) and leveraging holiday discounts (32%).
Sixty percent of respondents said they will prioritize personalized customer service as a way to enhance customer interactions and loyalty this year. Still others said they will invest in enhanced web and mobile experiences (23%) and eco-friendly practices (13%) to draw customers this holiday season.
That challenge is one of the reasons that fewer shoppers overall are satisfied with their shopping experiences lately, Lincolnshire, Illinois-based Zebra said in its “17th Annual Global Shopper Study.”th Annual Global Shopper Study.” While 85% of shoppers last year were satisfied with both the in-store and online experiences, only 81% in 2024 are satisfied with the in-store experience and just 79% with online shopping.
In response, most retailers (78%) say they are investing in technology tools that can help both frontline workers and those watching operations from behind the scenes to minimize theft and loss, Zebra said.
Just 38% of retailers currently use AI-based prescriptive analytics for loss prevention, but a much larger 50% say they plan to use it in the next 1-3 years. That was followed by self-checkout cameras and sensors (45%), computer vision (46%), and RFID tags and readers (42%) that are planned for use within the next three years, specifically for loss prevention.
Those strategies could help improve the brick and mortar shopping experience, since 78% of shoppers say it’s annoying when products are locked up or secured within cases. Adding to that frustration is that it’s hard to find an associate while shopping in stores these days, according to 70% of consumers. In response, some just walk out; one in five shoppers has left a store without getting what they needed because a retail associate wasn’t available to help, an increase over the past two years.
The survey also identified additional frustrations faced by retailers and associates:
challenges with offering easy options for click-and-collect or returns, despite high shopper demand for them
the struggle to confirm current inventory and pricing
lingering labor shortages and increasing loss incidents, even as shoppers return to stores
“Many retailers are laying the groundwork to build a modern store experience,” Matt Guiste, Global Retail Technology Strategist, Zebra Technologies, said in a release. “They are investing in mobile and intelligent automation technologies to help inform operational decisions and enable associates to do the things that keep shoppers happy.”
The survey was administered online by Azure Knowledge Corporation and included 4,200 adult shoppers (age 18+), decision-makers, and associates, who replied to questions about the topics of shopper experience, device and technology usage, and delivery and fulfillment in store and online.
An eight-year veteran of the Georgia company, Hakala will begin his new role on January 1, when the current CEO, Tero Peltomäki, will retire after a long and noteworthy career, continuing as a member of the board of directors, Cimcorp said.
According to Hakala, automation is an inevitable course in Cimcorp’s core sectors, and the company’s end-to-end capabilities will be crucial for clients’ success. In the past, both the tire and grocery retail industries have automated individual machines and parts of their operations. In recent years, automation has spread throughout the facilities, as companies want to be able to see their entire operation with one look, utilize analytics, optimize processes, and lead with data.
“Cimcorp has always grown by starting small in the new business segments. We’ve created one solution first, and as we’ve gained more knowledge of our clients’ challenges, we have been able to expand,” Hakala said in a release. “In every phase, we aim to bring our experience to the table and even challenge the client’s initial perspective. We are interested in what our client does and how it could be done better and more efficiently.”