I think … therefore I might be a material handling robot: interview with Ted Stinson
The days when robots were limited to a set of preprogrammed responses are over. Today’s AI-enabled bots are able to analyze, adapt, and even learn from each other, says Ted Stinson of AI software startup Covariant.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Artificial intelligence is set to explode across the distribution center, according to Ted Stinson, chief operating officer of Covariant, a Berkeley, California-based startup specializing in innovative software applications. We’ve heard similar predictions for years, but Stinson is confident the time is ripe—and he’s betting his career on it. Stinson left his job as partner with the venture capital firm Amplify Partners 18 months ago to join Covariant, which he had become acquainted with while helping the company develop its first business plan. After getting to know the Covariant team, he says, he decided it was time to chart a new career course and “be part of building an extraordinary company in an industry that will be at the forefront of the next wave of industrialization.”
He may be right. In its short life, Covariant has already made a splash in the supply chain industry, having forged impressive partnerships with Knapp and ABB to integrate its artificial intelligence (AI) software with their robotics systems.
But what exactly is artificial intelligence? How does it work and compare with the way humans think and act? DC Velocity Editorial Director David Maloney recently spoke with Stinson to learn more about this promising, yet complex, technology.
Q: How do you define artificial intelligence, or AI, as it applies to supply chain applications?
A: The concept of artificial intelligence is decades old. At one level, it is meant to represent the idea that systems software is capable of adapting and interacting in the way that you and I do as humans. AI today has evolved into ways that are achieving that goal. It is based on something called deep learning, where for the first time, systems have the ability to consume and analyze extraordinary amounts of data using a new, “neural network” approach to artificial intelligence. It has allowed people to apply and achieve artificial intelligence breakthroughs that simply weren’t possible prior to the last couple of years.
Q: You mention deep learning. And then there is reinforcement learning. Can you explain what they are?
A: The idea of deep learning and reinforcement learning is to learn from experience and to reinforce a behavior through failure or success. These techniques can also be applied to software, having it learn to adapt through trial and error. If you step back and think about that, that’s a huge contrast to the way software has worked historically, where every behavior, every interaction of the software had to be preprogrammed. You would have to specifically write into your code an action you wanted the software program or a robot to take. Now, the nature of these programs is that they enable the software or robot to take a try at something, and then the act of trying is analyzed and adapted to enable the software to learn from success and learn from failure.
Q: The artificial intelligence that you’re developing is going into robotics systems, such as picking robots. Why did you choose this area for your initial deployments?
A: The Covariant ambition is to build a universal AI. We call it the Covariant Brain. It is meant to be essentially the cognitive system for a robot—the “brain” that gives it the ability to see and reason and act on the world around it. We chose to focus on warehouses initially because the logistics market offers such a great opportunity to deploy these capabilities to automate jobs that are tedious and, thus, hard to fill. Things like order picking in an e-commerce or grocery or apparel warehouse are great examples. These jobs are clearly repetitive in nature, but at the same time, every pick has a degree of variability and change, which is what makes warehouse environments so challenging.
Q: What are some of the products robots have difficulty recognizing or handling?
A: A robot system essentially has cameras as its eyes. Seeing things in boxes that come in basic colors is relatively easy. They were among the first things that were “solvable,” but what’s beyond that? What about objects with subtle variations in their shapes, things that are flexible like apparel? A human can look inside a bin or tote containing different types of white T-shirts and pretty easily identify one white T-shirt from another. But to a robot, each T-shirt looks a little different when they are all folded and placed in the bin slightly differently. All those subtle variations represent a change—small, but fundamental.
Reflections from objects are also challenging. Even the way the objects get stacked and placed in the tote can present problems. A human can move around to get a better view of the objects in a box. But with a robot, getting a clearer view of what’s inside the box presents a fundamental challenge.
Q: So, we’ve talked about the recognition problems. What about the problems robots have in picking a variety of different objects?
A: Before the advent of modern AI, it simply was not possible for a robot to handle many different types of objects. Think of an apparel company, for example, that changes its products every season, so you have tens of thousands of items that change on a three- to four-month basis.
Beyond the changing product mix, there’s the challenge of gathering objects that are difficult to pick up. One of our partners, ABB, is one of the world’s largest robotic manufacturers. When it set out to find a partner for AI about a year ago, it developed a series of 26 different tests that essentially mimic real-world conditions. One of the tests was picking rubber ducks. As you can imagine, there are relatively few ways that a typical robotic end effecter can pick up a rubber duck successfully. So, the ability to understand the process—to learn from trying to pick up a rubber duck—is an example of something that is very simple for you and me to do, but extraordinarily hard for a robot to do and requires the ability to try to learn and adapt its behavior.
Q: I would imagine too that apparel can be very difficult to pick, especially if you have a vacuum end effecter that may not be able to grab cloth easily.
A: It is, to be sure. Picking apparel is one of the challenges we’ve put a lot of effort into solving. When you pick up a piece of clothing, it changes shape, so it’s different from, say, a box. In order to pick apparel successfully, the robot needs to understand that when it picks it up an object, that object is going to change shape, and that the new shape, whatever it is, will then have a very material impact on how the robot completes its task.
Q: Just as you’d find with a claw machine at a game arcade, objects in a box may also be too close to the sides for the robot to grab it. In that case, would the robot have to figure out how to manipulate or move the object to gain better access?
A: Yes. A key aspect of how we approach our systems is there is literally infinite variability in how objects can be sitting in a bin. So, you have to have a system that can both deal with all of the known conceivable ways that these objects can be positioned, then also adapt on the fly. We have developed a couple of different proprietary techniques. There are ways in which, for new scenes, new types of environments, the robot can adapt to that environment. It goes back to the core capability of trying, learning, and adapting its behavior until it succeeds.
Q: Could you address how a robot must also learn to adjust its approach based on the product, such as when picking a fragile item?
A: The example of how much pressure a robot should exert in picking up an object is something that could only be solved in a data-driven way. When it comes to the amount of pressure that could theoretically be applied, the possibilities are literally infinite. There is no way you could write a traditional software program that accounts for every possible level of pressure. You have to have a system that can learn and adapt in order to be able to assess the right amount of pressure to apply, just as for a human, there are an incredible number of instinctual judgments that have to be made in handling an object. It is through this deep-learning based approach that we are able to essentially mimic that sort of judgment and adaptability on the fly.
Q: What goes into training the robots to handle products they haven’t encountered before? Do you have to physically manipulate a robot to train it?
A: This is actually part of the secret sauce, which is that the system does this on its own. It is able, through trial and error, to learn and adapt to things it has never seen before and do so without any human intervention or human manipulation.
The initial work of adapting the AI to a customer’s operation is built into the preliminary process that we and our partners go through with customers. The Covariant Brain essentially comes out of the box “smart,” so implementations can be surprisingly fast. Most of the time, it is quick enough that it has no material impact on an operation’s throughput.
In the very beginning, the system might encounter new things that take an extra pick or two before it learns and adapts. But it generalizes these learnings and adapts relatively quickly, so that before long, it is, for the most part, operating at the performance levels that you’re looking for in the system. That accelerated learning process is one of the key benefits unlocked by modern AI systems.
Q: So basically, when you deploy a system, you’re actually using the knowledge from other systems that have been deployed before it? The robots can draw on the experience of previous robots?
A: Yes. This is really an important concept in envisioning operations—the idea that each robot deployed after the first one learns from those around it. So collectively over time, they accelerate the learning amongst themselves. That is one of the key value propositions. So, you could have a decanting robot that is learning from the experiences of an order picking robot. That ability to share learnings is unlocked by this underlying modern AI deep-learning based approach.
Q: Is this learning done in real time?
A: As you find with people, learning happens at different levels. There is some learning that happens in the moment and other learning that happens upon what I call “reflection.” Both are aspects of how the systems improve over time.
Q: You have industry partnerships with Knapp and ABB. Could you talk about how you’re working with these companies to deploy AI robotic solutions?
A: Covariant is an AI company. Our expertise is in building software. We partner with companies that have strong domain knowledge and strong robotics capabilities. Knapp and ABB are examples of both. Knapp has been one of the pioneers in the robotics field. It was first to market with an order picking solution. It has a long history of investing to bring this capability to market, and it recognized the limitations of traditional software when it comes to solving robotic picking problems.
Knapp concluded that we had developed something that was essentially the key to unlocking the adaptability and learning capability of robotics systems used in material handling applications. We entered into a partnership last year and have now brought two different use cases to market, with several more on the horizon. Overall, I am really excited about the partnership.
Q: Could you elaborate a little on those deployments and the kinds of products being handled?
A: Obeta is a German hardware supplier, and we’re seeking to introduce robotic systems into its operations. The system that is deployed at Obeta is the first system that we and Knapp have publicly announced. What’s notable about this deployment is that it’s a system that has achieved autonomy, which we think is a really important notion.
At the end of the day, what you want as an operator is the ability to have a robotic system that performs at the same level as your traditional manual processes. No asterisks, no exceptions. It just works in the same way. Hopefully, over time, it actually works better. That for us has been the benchmark.
Q: You are obviously looking at use cases for these technologies. Are there particular applications you’re looking at?
A: Within materials handling, we’re just getting started. We and Knapp have brought to market the order picking solution. We have half a dozen or more use cases that we and Knapp and other partners are in the process of formalizing. Our goal for supply chain and material handling leaders is to show that we will deliver a roadmap for a set of use cases and stations that are going to provide substantial coverage across a modern warehouse operation. One thrust of what we are looking to do is expand within that environment.
Q: So, this might involve other types of robotic systems beyond the robotic arm?
A: Absolutely. We haven’t talked a lot about that publicly, but we tend to think of a warehouse itself as one big robot. The conveyance systems and various mechanical devices are all systems that ultimately can be optimized through AI in terms of throughput, density, and performance. Our vision is to be able to take and leverage the underlying models and the Covariant Brain to unlock those gains over time.
Q: Obviously, we’re going through some very unusual times right now with the Covid-19 crisis. I would guess that automation is top of mind for many people because of the need for social distancing and eliminating human touches. Has that changed how you go to market?
A: Our focus from a commercial perspective through Covid-19 is to be there with our partners and for our customers to help them figure out where to get started. The question I get from every supply chain leader I talk to is not “Should I deploy robotics,” but “How do I deploy it and where do I start?” Our energy has been trying to guide our prospective customers through the choices and develop a framework that lets them start in the right place and then develop a roadmap for where to go next.
Q: Have we reached the point where the technology has finally caught up with the promise of AI?
A: The technology is ready. It is here today, and at the same time, it is still at the first stage of the journey. But we’re certainly at the point where I would encourage folks to invest the time to understand the different offerings. Now is the time in the evolution of these technologies for supply chain leaders to be looking at them closely and figuring out how they might use them to enhance their operations. I really encourage folks to look past the marketing and the demos in controlled environments. Ultimately, we need to be solving the challenges in the real world. I am really optimistic but also want to encourage people to be smart shoppers as they go through and look at these different capabilities.
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
Global trade will see a moderate rebound in 2025, likely growing by 3.6% in volume terms, helped by companies restocking and households renewing purchases of durable goods while reducing spending on services, according to a forecast from trade credit insurer Allianz Trade.
The end of the year for 2024 will also likely be supported by companies rushing to ship goods in anticipation of the higher tariffs likely to be imposed by the coming Trump administration, and other potential disruptions in the coming quarters, the report said.
However, that tailwind for global trade will likely shift to a headwind once the effects of a renewed but contained trade war are felt from the second half of 2025 and in full in 2026. As a result, Allianz Trade has throttled back its predictions, saying that global trade in volume will grow by 2.8% in 2025 (reduced by 0.2 percentage points vs. its previous forecast) and 2.3% in 2026 (reduced by 0.5 percentage points).
The same logic applies to Allianz Trade’s forecast for export prices in U.S. dollars, which the firm has now revised downward to predict growth reaching 2.3% in 2025 (reduced by 1.7 percentage points) and 4.1% in 2026 (reduced by 0.8 percentage points).
In the meantime, the rush to frontload imports into the U.S. is giving freight carriers an early Christmas present. According to Allianz Trade, data released last week showed Chinese exports rising by a robust 6.7% y/y in November. And imports of some consumer goods that have been threatened with a likely 25% tariff under the new Trump administration have outperformed even more, growing by nearly 20% y/y on average between July and September.