Supply chains to infinity and beyond: interview with Mark Wiese
NASA is heading back to the moon. That means it has to develop supply chains both here on Earth and in space. It's up to Mark Wiese and his team to pull it all together.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Mark Wiese is someone who understands what it means to "go boldly." As manager of the logistics element for NASA's Lunar Gateway program, it's his job to bring industry and government together to develop the support systems needed to enable NASA's return to the moon. In his current role, he's helping oversee the agency's effort to build a small lunar-orbiting spaceship that will support astronaut deployments to the moon's surface. It is the first step in eventually establishing a permanent lunar base and for further exploration that will one day carry astronauts to Mars and beyond.
Wiese relies on an extensive background as a NASA engineer and experience in executive management to drive a new model for space projects. In his role, he is reaching out to supply chain practitioners for help creating the innovative tools and systems required to support logistics demands as NASA leads the development of a commercial supply chain for deep space. Wiese spoke recently with DC Velocity Editorial Director David Maloney.
Q: NASA is embarking on what it calls its Artemis lunar exploration program. Can you tell us about this new initiative?
A: Artemis, in Greek mythology, is the goddess of the hunt and goddess of the moon. She is also the twin sister of Apollo. Apollo, of course, was our big NASA moon exploration campaign in the late 1960s. Today, we are driving forward, pushing to return humans to the moon and land the first woman and the next man on the moon's surface in 2024.
The big change this time is we are trying to do it sustainably. We want to set up a way where we can push the economy from "low Earth orbit," where it is now, even farther. We intend to use the moon as a stepping-stone, pulling commercial industry out there with us so that we can go beyond to Mars.
Q: As part of this project, NASA will build the Gateway, a small spaceship that will orbit the moon and include living quarters for astronauts, a lab for science and research, and ports for visiting spacecraft. Can you tell us a little about that?
A: To put the project in context, the International Space Station that's in use today flies in low Earth orbit—a couple hundred miles above the surface of the Earth. It's about the size of a six-bedroom house and serves as a laboratory. With Gateway, we are pushing from a couple hundred miles above Earth to 250,000 miles away to the orbit of the moon. In contrast to the International Space Station, Gateway will be more like the size of a studio apartment or a recreational vehicle. It will serve as our command hub and our waypoint to aggregate all the pieces that we need to conduct a sustainable campaign out in deep space.
With the goal of enabling a landing in 2024, the first phase of Gateway consists of a power and propulsion element, which is the power-generation piece. That goes up in 2022. Then in 2023, we will launch what we are calling HALO. That is our habitation and logistics outpost module. HALO is really the connector node that will dock the power and propulsion element and will have three ports on it plus a little bit of room inside for the crew to have extra habitable volume. Those three ports are critical because they allow build-out so it can serve as a waypoint.
One side of that port connects to our logistics element. We will bring supply ships with all of the goods that the crew needs—food, water, science experiments, and maybe the suits that they'll need to descend to the surface. So, we will bring that up and dock [the supply ship] to the Gateway to stay for the duration of the mission. The crew can also pack their trash in the supply ship for disposal.
On one of those other docking nodes, we will aggregate the various elements of the human landing system. That is where we actually put the pieces that enable a couple of the crew members to get down to the surface and then come back and redock at the Gateway. The third hub is where Orion will dock. Orion is our deep-space, human-rated spaceship.
So, Gateway serves as the aggregation point for all those pieces to come together. It will serve as the command and service center for missions that go down to the moon's surface. Crews move into a human lander, go down to the surface, conduct their mission, and come back to Gateway, where they will then transfer into Orion and journey back to Earth or farther into deep space, including Mars.
Our piece is enabling that commercial supply chain to find ways to transport and supply the different pieces to build up Gateway and all the things the crew needs to actually conduct the missions.
Q: This would be within lunar orbit? How far away from the moon will the Gateway actually orbit?
A: The Gateway will be in what we call a "Near-Rectilinear Halo Orbit," or NRHO. Think of the International Space Station today. It is in a low Earth orbit, where it constantly stays within 200 or so miles of Earth. Gateway will be in a highly elliptical or stretched-out oval-type seven-day orbit. That gets us as close as 1,900 miles to the surface of the moon. Then it will jump out to as far as 43,000 miles on the far end of that orbit. That will make it easier for us to move things to a point that is closer to Earth but farther away from the moon. The supplies can be delivered and then ride the rest of the way in on the Gateway, as it completes its orbit and moves closer to the moon.
For moon missions, we can depart with the human landing system to get down the rest of the way to a low lunar orbit and then all the way down to the surface. Gateway sets up this aggregation point in this NRHO orbit to give us a lot of flexibility to really utilize commercial abilities we have developed for low Earth orbit today.
Q: You've said that with Artemis, you're taking a different approach from the Apollo lunar exploration program in the 1960s. Can you elaborate on that?
A: When we went with Apollo, we brought everything on one launch. It took a lot of energy to get down to the surface. We counted in hours the amount of time that the crew actually spent on the surface. This was just like when people began migrating across our country; they only went from the East Coast to the West Coast in the early days. Then, we set up supply chains so that more people could go back and forth. We set up the right infrastructure to enable the economy to grow.
What we're doing differently this time is we're putting a permanent presence in orbit and then finding ways to utilize assets out there. For a long time, we thought the moon was really dry. But about a decade ago, a surface probe confirmed that there is water ice on the moon, especially at the poles and in areas that are in constant shadow. Knowing that there are these resources on the moon is huge because launching things off of Earth is expensive. If we can find a way to start tapping some of these resources, then we can use that to refuel pieces of our architecture, which really sets up a new logistics node for us to drive farther and farther out.
Q: You mentioned a need for logistics. What role can our logistics and supply chain community play in helping you fulfill this mission?
A: It is important for us to constantly drive ways to push research and development (R&D) in space that could have applications here on Earth. For a long time, NASA has essentially been the R&D leg of the government. We take taxpayer dollars and invest them in areas where we want to advance technology beyond what we think is possible. We are good at that. But we also need help. We need to find ways to partner with industry to understand use cases down here on Earth and how we can drive that technology development out in deep space. We want to find ways for industry to make money and sustainably drive the economy.
Q: So, this is a different approach from the 1960s, when the government and NASA did most of the development and industry just followed behind?
A: Yes. In the '60s, the government was definitely in the driver's seat and was driving design as well. Our logistics element now is unique because we are not saying **ital{how} we want industry to do the work out there—we are simply stating what we need. We are opening it up so that we can find ways to really help each other.
With the biggest piece of the Artemis program, we have a 15-year contract and a 12-year ordering period. We have left this wide open because we know we will have lots of innovation. There is artificial intelligence and there are a lot of internal robotics solutions. We want to be an access point to try to drive solutions that will help both on the ground and in space.
Q: NASA was famous for producing innovations during the Apollo program. Are you looking to see the same kind of outgrowth from Artemis?
A: We know that will happen. We are really good at solving technical challenges. I think we are definitely motivated by finding unique solutions to things that people hadn't really thought of as a problem yet. We know that will happen as a part of Artemis, and that is the exciting part too. It may be a relationship where we are helping each other and it helps us pull that whole economy with us.
The biggest risk we face in pulling off Artemis isn't the technical challenges. It's the political risks. It's making sure the public understands the value in investing in what we do and sees the potential for spinoffs from all this to improve life here on Earth. We will look to develop supply chains outside of Earth's orbit. We may also solve some of our greenhouse-gas problems here on Earth because we will look at ways to harness fuels and energies outside the bounds of Earth's gravity.
Q: What particular technologies are you looking at right now, and what are some of the problems you want to solve logistically?
A: We have all the technologies to pull this mission off. The biggest change for us from the International Space Station today and the Apollo mission in the '60s is that we have always had a crew. We have always had a person there. One of the biggest things we are trying to figure out is how to do things autonomously. So, if we bring up this huge cargo container to pre-dock to Gateway, how do we make sure the unloading and retrieval process is as efficient as possible for our crew when they get up there? We don't want them spending a lot of time trying to find things or moving things around. So, can we use internal robotics? How can we have the right systems that intelligently help them find what they need—whether it's the food for the next week or a piece that they're looking for?
We are looking for a lot of different ways to leverage artificial intelligence and to leverage autonomy. We know we have a different radiation environment out there, so that is something we're working on. We know there will be hazards created by the lunar dust that gets kicked up when we go down to the moon's surface. We've got a lot of things that we're working on, but I think one of the biggest ones to leverage with the Earth-based logistics community is autonomy and how to be as efficient as possible.
Q: Are there particular warehousing and transportation technologies that you have already identified as being suited for use in space?
A: We use RFID [radio-frequency identification] today on the International Space Station. That technology is important to us. We are starting the early discussions on internal robotics and what that would look like. How do we pre-position some kind of robotic system to move things around? We need the right interfaces so that we don't limit our abilities to procure different systems.
We are really at the leading edge right now, so it is the perfect time to start partnering with industry. We hope to award our contracts soon for the logistics piece and then that will identify our prime companies that are going to help pull this off. Then, we can start pushing the studies to help us fill in the details on how this will operate once it's in orbit.
Q: What type of earthbound logistics support are you looking for to help pull all of this together?
A: Right now for the space station, we have warehousing that happens in Houston and packing that happens here at the Kennedy Space Center. We are hoping to leverage some of that, but we know this is going to open up new markets and drive things a little differently. We're keeping our ears open to make sure we do this right and do this sustainably and efficiently—so that it's not just government driving it but that it's done in a way that leverages the greatest minds on how to move things around the globe commercially.
Q: How can companies in the supply chain that provide technologies and services participate in this?
A: Once we award our contracts and have the prime vendors for the service, we are going to make sure we are constantly pushing studies to understand how to improve and how to drive those next enhancements. We will drive these prime contractors to reach out more broadly. I think the other piece that can be done is for us to make sure we are pulling you guys into what we do here in the space industry so you are aware of it and you know what companies have been awarded contracts. Companies can then create relationships with them. So, the government will not be in the way and can help enable those synergies.
There is a huge drive for cross competition in the aerospace market, and there have been huge disruptions over the last decade that have resulted in our getting away from that traditional model and doing things differently. We have seen a lot of that with companies like SpaceX, Blue Origin, and Virgin Galactic. There are many more players entering the market. We want to use our resources and our name recognition and brand to help connect all these pieces. It's not just the traditional aerospace industry, but it is also pulling in all the ground logistics infrastructure here on Earth to help drive that innovation forward.
Q: What are the next steps?
A: We released the final RFP [request for proposals] in August, and proposals were due in October. My team is evaluating proposals now. As soon as Congress approves the budget, we are moving forward. We will announce awards and they will be the prime contractors that will integrate all of this. They will then potentially put RFPs out for different things that they need help with. NASA will continue to make sure we are sending messages to the right industries and talking to our prime contractors to drive them to look at innovative solutions around continued competition.
Q: What message do you have for the supply chain community with regard to how it can help you with the Gateway and Artemis programs?
A: NASA is the research and development leg of this country, so we are the place where science fiction becomes science fact. We need logistics and supply chain players to think about activities and processes that they have always dreamed of trying to innovate—always dreamed of trying to disrupt. We are the avenue to get that started. We are the best people to partner with because our dollars are all going to R&D and efficiencies of scale. We can be the spark to move a technology from infancy to fruition. We can help buy down risk for technologies and innovations that will really drive industries here on Earth.
Think about how these industries could merge down the road. Someday, it could open up ways for us to ship things across the globe using rockets. Instead of overnighting something for next-day delivery, we can use that technology to transport something in a couple of hours between coasts or across continents.
Q: How can companies find out what the needs are and the kind of problems you are looking to solve?
A: They can visit our website, which provides information on the overall NASA Artemis program. In the near future, we'll set up a dedicated web space for innovators to visit and learn how to pitch ideas for R&D seed money.
We recognize at NASA how important it is to inspire the next generation. We've got to always think beyond our vision if we're going to grow and expand. NASA is at the leading edge of that with the Artemis program.
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.
The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.
According to Starboard, the logistics industry is under immense pressure to adapt to the growing complexity of global trade, which has hit recent hurdles such as the strike at U.S. east and gulf coast ports. That situation calls for innovative solutions to streamline operations and reduce costs for operators.
As a potential solution, Starboard offers its flagship product, which it defines as an AI-based transportation management system (TMS) and rate management system that helps mid-sized freight forwarders operate more efficiently and win more business. More broadly, Starboard says it is building the virtual infrastructure for global trade, allowing freight companies to leverage AI and machine learning to optimize operations such as processing shipments in real time, reconciling invoices, and following up on payments.
"This investment is a pivotal step in our mission to unlock the power of AI for our customers," said Sumeet Trehan, Co-Founder and CEO of Starboard. "Global trade has long been plagued by inefficiencies that drive up costs and reduce competitiveness. Our platform is designed to empower SMB freight forwarders—the backbone of more than $20 trillion in global trade and $1 trillion in logistics spend—with the tools they need to thrive in this complex ecosystem."