Skip to content
Search AI Powered

Latest Stories

newsworthy

MIT engineers develop flexible robot

Designed to grow like a plant, the flexible yet sturdy robot can move through tight spaces and lift heavy loads, expanding the role of robotics in industrial settings, researchers say.

In a move to expand the role robotics play in today's factories and warehouses, engineers at MIT have developed a flexible but sturdy robot that can meander through tight spaces and lift heavy objects, the institution said Thursday.

Inspired by the way a plant grows, the robot is designed with a chain-like appendage that extends and can twist and turn in any configuration to access hard-to-reach places. It is also rigid enough to support heavy loads or apply torque to assemble parts, according to MIT. Presented during the recent IEEE International Conference on Intelligent Robots and Systems (IROS), the robot represents a leap beyond today's robots that can easily navigate across open laoyouts but have a harder time with fine-tuned tasks that require bending and reaching around items and equipment, the researchers say.


"Think about changing the oil in your car," Harry Asada, professor of mechanical engineering at MIT, said in a statement. "After you open the engine roof, you have to be flexible enough to make sharp turns, left and right, to get to the oil filter, and then you have to be strong enough to twist the oil filter cap to remove it."

"Now we have a robot that can potentially accomplish such tasks," added Tongxi Yan, a former graduate student in Asada's lab, who led the work on the new robotic solution. "It can grow, retract, and grow again to a different shape, to adapt to its environment."

The design mirrors the way plants grow, "which involves the transport of nutrients, in a fluidized form, up to the plant's tip. There, they [nutrients] are converted into solid material to produce, bit by bit, a supportive stem," according to MIT. In a similar way, the flexible robot's "growing point" is a gearbox that pulls a loose chain of interlocking blocks into the box. Gears in the box then lock the chain units together and feed the chain out, unit by unit, as a rigid appendage.

The design of the new robot is an offshoot of Asada's work to address the  "last one-foot problem"—an engineering term referring to the last step, or foot, of a robot's task or exploratory mission. Robots spend much of their time navigating open space—moving items from one place to another, for example—but the last foot of their mission may require "more nimble navigation through tighter, more complex spaces to complete a task," according to the researchers. 

MIT's new flexible robot can help accomplish those goals. By adding grippers, cameras, and sensors mounted on the gearbox, the researchers say the robot could potentially meander through an aircraft's propulsion system and tighten a loose screw or reach into a cabinet to grasp a product without disturbing the inventory around it. Auto maintenance is another example of a potential application.

"The space under the hood is relatively open, but it's that last bit where you have to navigate around an engine block or something to get to the oil filter, that a fixed arm wouldn't be able to navigate around," according to MIT graduate student Emily Kamienski, who also worked on the project. "This robot could do something like that."

The Latest

More Stories

port of oakland port improvement plans

Port of Oakland to modernize wharves with $50 million grant

The Port of Oakland has been awarded $50 million from the U.S. Department of Transportation’s Maritime Administration (MARAD) to modernize wharves and terminal infrastructure at its Outer Harbor facility, the port said today.

Those upgrades would enable the Outer Harbor to accommodate Ultra Large Container Vessels (ULCVs), which are now a regular part of the shipping fleet calling on West Coast ports. Each of these ships has a handling capacity of up to 24,000 TEUs (20-foot containers) but are currently restricted at portions of Oakland’s Outer Harbor by aging wharves which were originally designed for smaller ships.

Keep ReadingShow less

Featured

screen shot of onerail tech

OneRail raises $42 million backing for fulfillment orchestration tech

The Florida logistics technology startup OneRail has raised $42 million in venture backing to lift the fulfillment software company its next level of growth, the company said today.

The “series C” round was led by Los Angeles-based Aliment Capital, with additional participation from new investors eGateway Capital and Florida Opportunity Fund, as well as current investors Arsenal Growth Equity, Piva Capital, Bullpen Capital, Las Olas Venture Capital, Chicago Ventures, Gaingels and Mana Ventures. According to OneRail, the funding comes amidst a challenging funding environment where venture capital funding in the logistics sector has seen a 90% decline over the past two years.

Keep ReadingShow less
screen display of GPS fleet tracking

Commercial fleets drawn to GPS fleet tracking, in-cab video

Commercial fleet operators are steadily increasing their use of GPS fleet tracking, in-cab video solutions, and predictive analytics, driven by rising costs, evolving regulations, and competitive pressures, according to an industry report from Verizon Connect.

Those conclusions come from the company’s fifth annual “Fleet Technology Trends Report,” conducted in partnership with Bobit Business Media, and based on responses from 543 fleet management professionals.

Keep ReadingShow less
forklifts working in a warehouse

Averitt tracks three hurdles for international trade in 2025

Businesses engaged in international trade face three major supply chain hurdles as they head into 2025: the disruptions caused by Chinese New Year (CNY), the looming threat of potential tariffs on foreign-made products that could be imposed by the incoming Trump Administration, and the unresolved contract negotiations between the International Longshoremen’s Association (ILA) and the U.S. Maritime Alliance (USMX), according to an analysis from trucking and logistics provider Averitt.

Each of those factors could lead to significant shipping delays, production slowdowns, and increased costs, Averitt said.

Keep ReadingShow less
chart of trucking conditions

FTR: Trucking sector outlook is bright for a two-year horizon

The trucking freight market is still on course to rebound from a two-year recession despite stumbling in September, according to the latest assessment by transportation industry analysis group FTR.

Bloomington, Indiana-based FTR said its Trucking Conditions Index declined in September to -2.47 from -1.39 in August as weakness in the principal freight dynamics – freight rates, utilization, and volume – offset lower fuel costs and slightly less unfavorable financing costs.

Keep ReadingShow less