Some vendors are incorporating artificial intelligence and machine learning into their global trade management software. Here's how these technologies could improve trade compliance and classification.
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
If you work for a business that imports products into the U.S., you know how important it is to correctly describe and declare them to U.S. Customs and Border Protection (CBP) when they enter the country. For customs purposes, the product description consists of two elements. The first is an English-language description of the product, and sometimes its function or purpose. The second is the product's tariff classification in the form of a numerical identifier.
The correct tariff classification is critical: As its name suggests, it's the primary factor in determining which tariffs apply and the amount of duty you'll pay. Get it wrong, and you could end up paying more than you should ... or less than you should and have to make up the difference later (and possibly pay a fine to boot). This is no small matter; for a large importer, a mistake could potentially add up to millions of dollars in unnecessary expense.
But tariff classification is a complex and difficult process, and human experts are hard to come by. Classification errors are common, and tales of epic disagreements between customs authorities and importers abound. And there's a new complication: President Trump's tit-for-tat trade war with China has led, often with little advance notice, to repeated rounds of tariff increases on both sides. It's more important than ever to verify that a commodity really is—or isn't—subject to those higher duties.
Importers have long turned to global trade management (GTM) software and stand-alone tariff-classification solutions to help them classify their products correctly. But the complexity of the task makes it hard to fully automate. Now, software providers are betting that incorporating artificial intelligence (AI) and machine learning (ML) into their products to make the software "think" and act more like a human expert will take classification technology to the next level. Proponents believe these technologies could significantly improve accuracy and prevent costly errors—a welcome development at a time when so much is riding on getting things right.
It's complicated, to say the least. The HTSUS assigns each imported item—which may be a finished product, part, component, or raw material—a unique 10-digit number. To find that number, importers drill down through chapters, headings, subheadings, and individual item numbers, progressing from the vague and general (vegetable products) to the excruciatingly specific (cut flowers and flower buds of a kind suitable for bouquets or for commercial purposes, fresh, dried, dyed, bleached, impregnated, or otherwise prepared: roses). The HTSUS currently includes more than 17,000 classification-code numbers. (U.S. exports require a similar product classification and an export control number, or ECN, to be filed with the U.S. Department of Commerce.)
Identifying the correct number can be a tedious, time-consuming process. It's also complex and rife with ambiguity, even for customs-compliance professionals. A product might fit several HTSUS descriptions, or it might fit none of them exactly.
Furthermore, the descriptions, which were developed for duty-assessment purposes, may bear little resemblance to those used by manufacturers or end-users. Just one example: electric toothbrushes, which are classified not with other toothbrushes but as electronics. Sometimes creativity is called for, such as when classifying sets and kits, which requires establishing the product's "essential character." To top it off, the General Rules of Interpretation (GRI) that govern the classification process are difficult to learn, says Beth Pride, president of BPE Global, a provider of customs-compliance consulting services.
It's a challenge for anyone—including the government officials who judge whether a classification is correct—to always get it right. Now, the hope is that bringing today's digital tools—namely, ML and AI—into the process will help cut through the complexity.
WHY AI AND ML?
Artificial intelligence is an umbrella term for any type of technology that mimics human thought patterns or behavior, explains William McNeill, a Gartner analyst who writes an annual market report on GTM software. The algorithm-based technology conducts analyses, makes decisions, and responds or takes action much as humans do. For example, AI applies "natural language processing" to recognize, understand, and respond to or act on written or verbal communication. Machine learning is a subset of AI. This technology uses iterative processes to access and correlate data, recognize patterns, and use what it has "learned" or "experienced" to improve its predictive or decision-making model.
Most GTM software vendors have "put AI and related technologies on their product road map," Pride says, "but AI is still developing, and vendors are trying to find the best places to use it." She and others consulted for this article believe there's a strong use case for AI and ML in global trade, particularly for classification accuracy (the main focus of this article), denied-party screening, calculating estimated time of arrival, and risk prediction and avoidance.
AI and ML tools can process enormous amounts of information from multiple sources, including the tariff classification schedules, a user's own product data, customs rulings, and historical classification data. What's particularly valuable about machine learning is that it considers the same data sources that are available to humans but "looks for correlations that you can't get to with the human mind," McNeill says. For example, when human experts classify an imported product, they use their own country's version of the Harmonized Tariff Schedule and maybe review some examples of what other companies have done. But machine learning could go further, he says. A hypothetical example: analyzing historical submissions, cross-referencing them to dispute rulings and other relevant data, and detecting a recurring problem with imports associated with the classification number in question. "I would argue that it's not possible for classifications and denied-party screening to be accurate enough without automation," McNeill says. "You couldn't make the correlations that enable you to put a new lens on the data you have and find new value from it."
Automating routine tasks and freeing up experts to focus on problem-solving makes sense, especially since it's hard to find experts in this field. Furthermore, machine learning could force proper application of the GRI. And when confronted with new products that aren't explicitly provided for in the tariff schedules, Pride says, ML could "learn" from similar cases and recommend new classifications—not just to importers but also to governments. In fact, some governments are already using AI to identify classification errors and related violations.
One example of how this works can be found in the classification solution offered by 3CE Technologies. President and CEO Randy Rotchin describes the software as "an expert system designed to emulate how an expert would tackle this problem." The software "reads" the commercial goods description, and if all the details needed for correct classification are included in that description, it suggests a classification code. If not, it "interacts" with the user until all the required details have been provided and then delivers a code. AI comes into play via the use of natural language processing to read, analyze, and understand product descriptions, Rotchin says. Currently, machine learning is being used to reduce the number of questions and/or choices presented to users by, for example, eliminating theoretically possible but unlikely options and offering only those that are known to be relevant.
Some other GTM software providers are developing their own AI and ML tools for classification, while some incorporate 3CE's solution into their products. Thomson Reuters, for example, does the latter, giving its software the ability to understand plain-language product descriptions and identify the correct HTS or ECN code (for imports or exports, respectively), says Mary Breede, a customer insight leader for Thomson Reuters' Onesource Global Trade Management solution.
Another example of how AI and ML are solving problems in global trade comes from Pawan Joshi, executive vice president of product management and strategy at E2open, the parent of GTM software provider Amber Road. He notes that many data sources include inaccuracies and inconsistencies. E2open uses machine learning to correct such errors and improve the data quality based on the source, he says. "For example, if we keep getting addresses with the city spelled incorrectly, we can correct that across multiple languages." And because each of the tens of thousands of entities on E2open's network platform has a distinct "signature," the system can identify the source of the incorrect information. "Machine learning has the ability to self-correct it without human intervention," he explains.
Joshi notes that an added advantage of using ML to improve data quality in global trade is that the number of errors constantly declines as the machines learn more, which may free up customers to focus more on preventing problems.
KNOW THE LIMITS
While the benefits of applying AI and ML to classification are clear, that doesn't mean they can—or should—completely replace human experts. One reason, says Pride, is that some of the historical data the technology is learning from may be incomplete, outdated, or simply incorrect.
What would happen if an AI- or ML-based solution recommended an incorrect classification? By law, the importer is ultimately responsible for customs compliance, and McNeill notes that most software vendors have clauses indemnifying them in case of errors. However, the technology could itself be a mitigating factor because it imposes a consistent process with proper controls in place, something CBP likes to see, he adds.
Experts say there's a line that shouldn't be crossed when it comes to automating classification. "Of course you want the machines to do as much as possible," says Joshi. "But the moment they reach a certain threshold or limitation on the degree of confidence, then you want to stop and flag the task for a human expert to assess."
There's another reason to think carefully about the use of AI, Breede says. "AI systems will be powered by algorithms analyzing an organization's vast volume of global trade data, and, if left unchecked, these tools have the potential to amplify any human biases the organization inadvertently has perpetuated in its supply chain operations."
All of the experts we consulted expect that AI and ML will become widely used for classification, in large part because human expertise is in short supply. The growth of cross-border e-commerce will provide further incentive to adopt these technologies. When shippers book an international shipment with a parcel carrier, they're forced by the booking software to provide a classification. Large shippers know what to do, but small companies and individuals are unlikely to learn the rules of classification, Pride says. Instead, they quickly "pick what they think is OK" and move on with the transaction. Until AI and ML are built into couriers' systems, classifications for many e-commerce shipments will continue to be incomplete and incorrect, she says.
Breede says that, while AI and ML are "still in an infancy stage" relative to trade compliance, there are other, more immediate opportunities in GTM. These include searching for patterns or anomalies to identify fraudulent transactions; learning from past mistakes and steering the next iteration of operational methods; and reducing supply chain risk by finding correlations in historical data to help forecast customer demand and predict supply chain disruptions.
Joshi of E2open believes that AI and ML could convert tactical functions like classification and denied-party screening into strategic tools. For example, a company could use them to gather data that would be relevant as an order progresses through the supply chain, identify important correlations, and attach the information early on, such as when a purchase order or booking is issued, he says. Such information might include why the product is being sourced from a particular region and an advisory noting that if it is trans-shipped through a certain port, that cargo will require denied-party screening. "Even though such considerations may seem to be tactical, when you pull them further upstream, they can be more strategic," he says.
In this scenario, the roles of customs brokers and third-party logistics service providers (3PLs) will change. "Rather than paper pushing, they will focus more on moving product, on logistics and warehousing, on being the relationship liaison with carriers and ports," Joshi predicts. "Some may go away, while others will change the work content and value they provide."
Breede sums it all up this way: "As AI and ML are introduced into an industry, they reshape that industry's practices. ... What's clear is that artificial intelligence and its associated technologies will continue to transform how trade experts interact with information and machines."
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.
The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.
According to Starboard, the logistics industry is under immense pressure to adapt to the growing complexity of global trade, which has hit recent hurdles such as the strike at U.S. east and gulf coast ports. That situation calls for innovative solutions to streamline operations and reduce costs for operators.
As a potential solution, Starboard offers its flagship product, which it defines as an AI-based transportation management system (TMS) and rate management system that helps mid-sized freight forwarders operate more efficiently and win more business. More broadly, Starboard says it is building the virtual infrastructure for global trade, allowing freight companies to leverage AI and machine learning to optimize operations such as processing shipments in real time, reconciling invoices, and following up on payments.
"This investment is a pivotal step in our mission to unlock the power of AI for our customers," said Sumeet Trehan, Co-Founder and CEO of Starboard. "Global trade has long been plagued by inefficiencies that drive up costs and reduce competitiveness. Our platform is designed to empower SMB freight forwarders—the backbone of more than $20 trillion in global trade and $1 trillion in logistics spend—with the tools they need to thrive in this complex ecosystem."
Global trade will see a moderate rebound in 2025, likely growing by 3.6% in volume terms, helped by companies restocking and households renewing purchases of durable goods while reducing spending on services, according to a forecast from trade credit insurer Allianz Trade.
The end of the year for 2024 will also likely be supported by companies rushing to ship goods in anticipation of the higher tariffs likely to be imposed by the coming Trump administration, and other potential disruptions in the coming quarters, the report said.
However, that tailwind for global trade will likely shift to a headwind once the effects of a renewed but contained trade war are felt from the second half of 2025 and in full in 2026. As a result, Allianz Trade has throttled back its predictions, saying that global trade in volume will grow by 2.8% in 2025 (reduced by 0.2 percentage points vs. its previous forecast) and 2.3% in 2026 (reduced by 0.5 percentage points).
The same logic applies to Allianz Trade’s forecast for export prices in U.S. dollars, which the firm has now revised downward to predict growth reaching 2.3% in 2025 (reduced by 1.7 percentage points) and 4.1% in 2026 (reduced by 0.8 percentage points).
In the meantime, the rush to frontload imports into the U.S. is giving freight carriers an early Christmas present. According to Allianz Trade, data released last week showed Chinese exports rising by a robust 6.7% y/y in November. And imports of some consumer goods that have been threatened with a likely 25% tariff under the new Trump administration have outperformed even more, growing by nearly 20% y/y on average between July and September.