Solving the final 50 feet: interview with Barbara Ivanov
For businesses that make city deliveries, the challenge isn't so much the last mile as the last 50 feet, starting with the battle for parking space. Barbara Ivanov and her team at the Urban Freight Lab are looking for ways to ease the pain.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
We've all heard that the last mile is the most expensive part of the shipping process. That's due to the labor, time, and fuel required to move smaller quantities of items to multiple destinations compared with moving them in bulk.
But the most challenging, and typically most inefficient, part of the process is the actual delivery itself—the final 50 feet, where the driver must park the vehicle and attempt to deposit the package with its recipient. And nowhere is that more challenging than in crowded urban environments, where drivers must contend with limited street parking, traffic congestion, and high-occupancy buildings.
Is there a more efficient way to make these deliveries? That is the question that Barbara Ivanov ponders each day. An expert on urban goods delivery and public freight systems, Ivanov is the director of the University of Washington's Urban Freight Lab, a group that's investigating high-impact, low-cost solutions for businesses delivering goods in urban settings and cities trying to manage limited street parking in areas where delivery trucks, bicycles, pedestrians, and cars must all coexist. She talked recently with DC Velocity Editorial Director David Maloney about the lab's current research initiatives.
Q: Could you tell me about the work of the Urban Freight Lab?
A: We have been in existence since December 2016. The group has gathered around what we have taglined the "final 50 feet," which is the series of activities or the process flow that starts when a delivery vehicle stops. That could be at the curb, in an alley, or in an underground loading bay. It then tracks the delivery person as they make their way to the building, enter and pass through security, and go from floor to floor to make the final delivery. We've focused on that final 50 feet because our members tell us that is where about 60 percent of the delivery time is actually spent.
So, the idea behind forming this group is that each of its members owns a piece of that or strongly influences it. The city owns the curb and in Seattle's case, as in several other major cities, the network of alleys. The building property managers own the buildings. The delivery companies own the equipment and the service itself. All of this is the basis for moving retail goods. The people in the group all own a piece of the process, but none of them can solve this kind of problem by themselves.
Q: Who are the group's members?
A: The Urban Freight Lab is a structured work group made up of senior executives from a dozen companies. Those member companies include two major retailers, Kroger and Nordstrom, as well as the multinational food and beverage giant PepsiCo. We also have several key parcel delivery players: UPS, the U.S. Postal Service, and USPack, which not only does parcel but also med-pharma as well as "big and heavy." Plus we have Terreno Realty Corp., which buys, holds, and manages DCs in urban downtown centers; Boeing HorizonX, which has investments in future technology like drones; and Expeditors International, a large freight forwarder. We have three OEMs—Ford, GM, and Michelin—so you can see it is a really amazing group.
Senior executives come to Seattle four or five times a year when we are making decisions about the research. What sets this group apart is that with our partners—the city of Seattle and now, the city of Bellevue (Wash.)—we actually run empirical pilot tests on the street, in office towers, and in residential towers for the most promising strategies we have developed.
Q: What are some of the issues you're tackling?
A: There are two priority problems that the members and our partners, the local cities, have prioritized. The first is to reduce dwell time—the amount of time that delivery vehicles spend at the curb. Why does that matter? Well, obviously for the delivery company—UPS, for example—it's great if you can get in and out of the space more quickly because you can get your work done faster. But there's also a huge benefit from the cities' point of view. They're seeing demand for curb space skyrocket at a time when they're actually reducing curb lanes because there are other things cities value, like transit lanes and bike lanes. What remains must be much more productive. So, the number-one priority is reducing truck dwell time.
The number-two priority is to reduce the absolute number of failed first-delivery attempts. That is the sweet spot for delivery companies. They are losing money by having to come back a second or even third time to try to make a delivery. It is such a waste.
Q: Are you looking at ways to ensure there are places for vehicles to pull over to make their deliveries as opposed to double-parking and adding to congestion?
A: Absolutely. That is exactly what we are doing right now. We started out by mapping every loading space for commercial vehicles, including private loading bays, in downtown Seattle. That has not been done in other cities. That is building block number one. Then, we studied occupancy: How are people actually using these spaces currently?
Next, we started testing promising strategies. In our group's view, the most promising concept, the one with the biggest payoff, was the use of common lockers—lockers that can be used by any retailer. We position them as close as possible to a load zone so that UPS drivers can pull up, load the lockers, and go about their business.
What does that do? First, it sure as heck reduces the dwell time. We ran a pilot test in a 62-floor office tower in downtown Seattle, and it cut delivery time by 78 percent. So, instead of it taking the driver 20-some minutes to do their work, it became six minutes. Huge benefits.
Because of this work, we were able to obtain a $1.5 million grant from the U.S. Department of Energy (DOE). That is enabling us, with Seattle and Bellevue as our partners, to run a much larger pilot test.
As for what that pilot will entail, one thing we're going to do is place occupancy sensors in every one of the loading spaces in an eight-block area in downtown Seattle and right in the downtown core of Bellevue. Our partner on the project, Pacific Northwest National Laboratory, will collect and analyze data from those sensors and then use machine learning to notify drivers in real time via their smartphones which spaces are open. And in fairly short order, using the app, they will be able to see with high probability which spaces are about to open up. That is strategy number one of the DOE grant—to assist drivers in making the most efficient parking choice they can.
As another part of the project, we'll be placing more of those common lockers on curbs in the public right of way. We are going to do that right next to transit stops, bus stops, or train stations.
Q: Could you tell us more about your locker pilot program?
A: Yes. As I mentioned, we ran a proof of concept in a Seattle municipal tower about a year and a half ago. We are now expanding that in an eight-block area, and we will have potentially three or four of the locker stations.
We also want to expand and test temperature-controlled lockers. There is so much demand for food deliveries, whether it's groceries or prepared food. The big question in food is whether the customer will prefer to have it come right to them or be willing to go to a locker, where you'd have more delivery density. I'm sure that is going to vary based on population, on market, and on density. For example, there is a fairly good-sized senior center in our pilot test area, so I would guess that having temperature control for medications might be good, but we don't know that. That's why a lot of our work is running these real-world pilots. We get actual evidence about the conditions under which programs are likely to succeed or fail. And because we are academics, we are cool with failure.
Q: How will the lockers work?
A: The locker technology is pretty good, so we won't be testing the technology itself. It is really more about market use and acceptance. What happens is, you need to sign up. And then when you order something, you enter the locker address as the delivery address. As soon as your order is placed in that locker, you'll get a text or an email notifying you that it's ready for pickup.
Q: How far along are you in your study?
A: We are in year one of a three-year project. The pilot itself will run throughout 2020 and 2021, but we gave ourselves one full year to get permissions, and that is very realistic. We needed permission from the cities of Seattle and Bellevue for the exact pilot-test locations. We need to get permits to install the lockers from a separate group within Seattle's Department of Transportation that oversees sidewalks. We need to market the lockers.
On top of that, Seattle has a very strong surveillance ordinance. We've had to spend quite a bit of time understanding how we could "sensor" these places and obtain the data we need without running afoul of that surveillance ordinance, so it is a constraint. Then, of course, all the sensors need to be installed. We have to begin receiving the data, test it, and make sure the app actually functions well for drivers and dispatchers. The whole thing is going to light up in January 2020.
Q: What do you hope to achieve?
A: We have set actual quantitative goals. For instance, one of our objectives is to reduce the number of failed first deliveries by 30 percent. We're also looking to reduce what we used to call "parking seeking" behavior, but we've learned in the research we've done to date that it is really "parking choice" behavior. We are going to reduce the waste and make that parking-choice behavior more efficient.
Q: What other things are you planning to study?
A: Along with the growth of e-commerce, another trend we see building over the next five years is greater use of autonomous delivery vehicles. So, we are looking to sort out what the metrics for success might be for running a smart city with autonomous delivery vehicles. You can't manage these things until you have some pretty clear-cut, measurable goals. So, how would you set up this system? We are looking at questions like that.
The second thing that we're very interested in—and the lockers are really one example—is creating this "artificial density" for delivery, because dropping off one parcel every three seconds at individual addresses is the least-profitable, most-expensive part of the carriers' work. So, in addition to the lockers, we're interested in looking at shared micro hubs, which are flexible consolidation points for deliveries, as a way to allow companies to make good on the two-hour delivery promise that apparently is going to be the new standard for retail.
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
Global trade will see a moderate rebound in 2025, likely growing by 3.6% in volume terms, helped by companies restocking and households renewing purchases of durable goods while reducing spending on services, according to a forecast from trade credit insurer Allianz Trade.
The end of the year for 2024 will also likely be supported by companies rushing to ship goods in anticipation of the higher tariffs likely to be imposed by the coming Trump administration, and other potential disruptions in the coming quarters, the report said.
However, that tailwind for global trade will likely shift to a headwind once the effects of a renewed but contained trade war are felt from the second half of 2025 and in full in 2026. As a result, Allianz Trade has throttled back its predictions, saying that global trade in volume will grow by 2.8% in 2025 (reduced by 0.2 percentage points vs. its previous forecast) and 2.3% in 2026 (reduced by 0.5 percentage points).
The same logic applies to Allianz Trade’s forecast for export prices in U.S. dollars, which the firm has now revised downward to predict growth reaching 2.3% in 2025 (reduced by 1.7 percentage points) and 4.1% in 2026 (reduced by 0.8 percentage points).
In the meantime, the rush to frontload imports into the U.S. is giving freight carriers an early Christmas present. According to Allianz Trade, data released last week showed Chinese exports rising by a robust 6.7% y/y in November. And imports of some consumer goods that have been threatened with a likely 25% tariff under the new Trump administration have outperformed even more, growing by nearly 20% y/y on average between July and September.