Simulation technology is making it easier to see how well a new or upgraded conveyor system will meet long-term demands and accommodate evolving business needs.
Victoria Kickham started her career as a newspaper reporter in the Boston area before moving into B2B journalism. She has covered manufacturing, distribution and supply chain issues for a variety of publications in the industrial and electronics sectors, and now writes about everything from forklift batteries to omnichannel business trends for DC Velocity.
As warehouses and distribution centers continue to go high-tech, the tools used to design them are following suit with advances that make it easier for companies to predict how their operation will evolve to meet changing business demands over time. Conveyor simulation technology offers a case in point, shifting from a tool that simply shows how a conveyor system will work into one that can help companies plan the best system to meet peak service demands, ever-later order-cutoff times, and the staffing requirements to handle such changes. The software programs used to simulate conveyor system design today use advanced algorithms and data analytics to produce those results, and experts say the added use of sensors and Internet of Things technology is evolving to help produce real-time replicas of physical systems (think "digital twin" technology) that can provide organizations with even more productivity-enhancing data.
"Today, a customer can expect to see a lot more [from conveyor simulation] than just 'does the system work?'" explains Luther Webb, vice president, data science at material handling solutions provider Trew LLC. "[We have] more advanced modeling written in advanced code form. Today, [in a simulated design] the customer is looking at various formulas built into a model, and those formulas are interacting with each other."
The end result is a dynamic model of conveyor technology that is helping organizations maximize throughput and minimize labor costs.
"When you think about warehousing, it's about space, equipment, labor, and controls," says Michael Wohlwend, managing principal at material handling systems integrator Alpine Supply Chain Solutions. He adds that companies must maximize those four assets in order to ensure their warehouse or DC runs as efficiently as possible. "We're using [conveyor] simulation software to look at how you are going to optimize all of those things," he adds. "Our customers are asking us for designs that will help them improve overall throughput and reduce overall labor costs."
CHANGING TO MEET EVOLVING NEEDS
Systems integrators and equipment suppliers use conveyor simulation technology to develop and present solutions to customers, a mission that has not changed much since the technology first entered widespread use in the 1990s, Webb and others say. But customers are looking for more than just proof that a system works, and thanks to technology advances, today's software programs allow engineers and designers to deliver that information. Today's customers seek three key benefits of conveyor simulation, according to Webb: confidence that a proposed system will do the job; the ability to evaluate a proposed system's performance under changing conditions; and the ability to test and adjust operations, particularly staffing levels, as needs change.
"We talk about the customer's long-term expectation for the model" when working on a new project, explains Webb, adding that a customer may want to prove that a concept will work under specific conditions or test how it will respond to peak [volumes] or other complex situations in the warehouse or DC. "[Customers] also may want a model of the system that they can use long term to test daily scenarios. For example, they may want to run through the model every night with the next day's orders [to get answers to questions like]: Will I finish early? Do I need more people?"
The advent of "agent-based modeling" techniques is helping customers respond to those more complex and unpredictable environments, Webb and others add. Traditionally, engineers and system designers have used discrete-event modeling, which simulates the operation of a system as an individual series of events and times, and is ideal for processes that are predefined and in which interactions are basically linear, Webb explains. In contrast, agent-based modeling allows system designers to model the actions and interactions of separate processes in the system and how they will interact with each other. This allows designers to model and see unexpected behaviors as the agents interact with and influence the system, he adds. Companies using warehouse execution systems (WES), which connect disparate warehouse systems and functions in one platform, may benefit from such advances. Webb cites the order-release and picking processes as examples.
"As order releases are optimized based on a set of rules, the picking agent [software] will optimize based on its own set of rules," Webb explains. "As the models interact over time, you can discover outcomes you did not predict in a linear model."
Wohlwend agrees that advanced software and modeling techniques are making it easier to help customers plan for variations in demand—especially as organizations implement later order-cutoff times and faster delivery options.
"With the new demands from customers—especially for same- or next-day delivery—it requires us to use [more sophisticated] data and simulation tools to create an optimal design," he says.
NEXT UP: DIGITAL TWINS
The growing connectedness of today's warehouses and DCs is driving one of the biggest changes on the technology horizon: the use of digital twins. A digital twin is a virtual replica of a real object—a product, structure, facility, or system, according to technology research firm Gartner Inc., which released a study last year on businesses' use—and planned use—of digital-twin technology. The study found that, globally, nearly half of manufacturing organizations that were implementing Internet of Things strategies in 2018 were using or planned to use digital twins and that the number of firms doing so would triple by 2022. Webb says customers are increasingly interested in ways to use digital twins for conveyor system simulation because they offer a tool that can be used to test scenarios in real time.
"The level of detail we're able to provide is growing, [including] statistical information that can show when [a system] begins to reach challenges and how we can address those challenges," Webb explains. "This makes the concept of the digital twin very interesting to customers."
The Gartner study also showed that by next year, at least half of manufacturing firms with annual revenues of more than $5 billion will have at least one digital-twin initiative launched for either products or assets.
Conveyor system design may be one of them.
"By having a digital twin [of your equipment], it's no longer a stagnant model built for [concept development]," Webb says. "It's living, based on what is in production today—the equipment, processes, people. We can use it in real time."
The Port of Oakland has been awarded $50 million from the U.S. Department of Transportation’s Maritime Administration (MARAD) to modernize wharves and terminal infrastructure at its Outer Harbor facility, the port said today.
Those upgrades would enable the Outer Harbor to accommodate Ultra Large Container Vessels (ULCVs), which are now a regular part of the shipping fleet calling on West Coast ports. Each of these ships has a handling capacity of up to 24,000 TEUs (20-foot containers) but are currently restricted at portions of Oakland’s Outer Harbor by aging wharves which were originally designed for smaller ships.
According to the port, those changes will let it handle newer, larger vessels, which are more efficient, cost effective, and environmentally cleaner to operate than older ships. Specific investments for the project will include: wharf strengthening, structural repairs, replacing container crane rails, adding support piles, strengthening support beams, and replacing electrical bus bar system to accommodate larger ship-to-shore cranes.
The Florida logistics technology startup OneRail has raised $42 million in venture backing to lift the fulfillment software company its next level of growth, the company said today.
The “series C” round was led by Los Angeles-based Aliment Capital, with additional participation from new investors eGateway Capital and Florida Opportunity Fund, as well as current investors Arsenal Growth Equity, Piva Capital, Bullpen Capital, Las Olas Venture Capital, Chicago Ventures, Gaingels and Mana Ventures. According to OneRail, the funding comes amidst a challenging funding environment where venture capital funding in the logistics sector has seen a 90% decline over the past two years.
The latest infusion follows the firm’s $33 million Series B round in 2022, and its move earlier in 2024 to acquire the Vancouver, Canada-based company Orderbot, a provider of enterprise inventory and distributed order management (DOM) software.
Orlando-based OneRail says its omnichannel fulfillment solution pairs its OmniPoint cloud software with a logistics as a service platform and a real-time, connected network of 12 million drivers. The firm says that its OmniPointsoftware automates fulfillment orchestration and last mile logistics, intelligently selecting the right place to fulfill inventory from, the right shipping mode, and the right carrier to optimize every order.
“This new funding round enables us to deepen our decision logic upstream in the order process to help solve some of the acute challenges facing retailers and wholesalers, such as order sourcing logic defaulting to closest store to customer to fulfill inventory from, which leads to split orders, out-of-stocks, or worse, cancelled orders,” OneRail Founder and CEO Bill Catania said in a release. “OneRail has revolutionized that process with a dynamic fulfillment solution that quickly finds available inventory in full, from an array of stores or warehouses within a localized radius of the customer, to meet the delivery promise, which ultimately transforms the end-customer experience.”
Commercial fleet operators are steadily increasing their use of GPS fleet tracking, in-cab video solutions, and predictive analytics, driven by rising costs, evolving regulations, and competitive pressures, according to an industry report from Verizon Connect.
Those conclusions come from the company’s fifth annual “Fleet Technology Trends Report,” conducted in partnership with Bobit Business Media, and based on responses from 543 fleet management professionals.
The study showed that for five consecutive years, at least four out of five respondents have reported using at least one form of fleet technology, said Atlanta-based Verizon Connect, which provides fleet and mobile workforce management software platforms, embedded OEM hardware, and a connected vehicle device called Hum by Verizon.
The most commonly used of those technologies is GPS fleet tracking, with 69% of fleets across industries reporting its use, the survey showed. Of those users, 72% find it extremely or very beneficial, citing improved efficiency (62%) and a reduction in harsh driving/speeding events (49%).
Respondents also reported a focus on safety, with 57% of respondents citing improved driver safety as a key benefit of GPS fleet tracking. And 68% of users said in-cab video solutions are extremely or very beneficial. Together, those technologies help reduce distracted driving incidents, improve coaching sessions, and help reduce accident and insurance costs, Verizon Connect said.
Looking at the future, fleet management software is evolving to meet emerging challenges, including sustainability and electrification, the company said. "The findings from this year's Fleet Technology Trends Report highlight a strong commitment across industries to embracing fleet technology, with GPS tracking and in-cab video solutions consistently delivering measurable results,” Peter Mitchell, General Manager, Verizon Connect, said in a release. “As fleets face rising costs and increased regulatory pressures, these technologies are proving to be indispensable in helping organizations optimize their operations, reduce expenses, and navigate the path toward a more sustainable future.”
Businesses engaged in international trade face three major supply chain hurdles as they head into 2025: the disruptions caused by Chinese New Year (CNY), the looming threat of potential tariffs on foreign-made products that could be imposed by the incoming Trump Administration, and the unresolved contract negotiations between the International Longshoremen’s Association (ILA) and the U.S. Maritime Alliance (USMX), according to an analysis from trucking and logistics provider Averitt.
Each of those factors could lead to significant shipping delays, production slowdowns, and increased costs, Averitt said.
First, Chinese New Year 2025 begins on January 29, prompting factories across China and other regions to shut down for weeks, typically causing production to halt and freight demand to skyrocket. The ripple effects can range from increased shipping costs to extended lead times, disrupting even the most well-planned operations. To prepare for that event, shippers should place orders early, build inventory buffers, secure freight space in advance, diversify shipping modes, and communicate with logistics providers, Averitt said.
Second, new or increased tariffs on foreign-made goods could drive up the cost of imports, disrupt established supply chains, and create uncertainty in the marketplace. In turn, shippers may face freight rate volatility and capacity constraints as businesses rush to stockpile inventory ahead of tariff deadlines. To navigate these challenges, shippers should prepare advance shipments and inventory stockpiling, diversity sourcing, negotiate supplier agreements, explore domestic production, and leverage financial strategies.
Third, unresolved contract negotiations between the ILA and the USMX will come to a head by January 15, when the current contract expires. Labor action or strikes could cause severe disruptions at East and Gulf Coast ports, triggering widespread delays and bottlenecks across the supply chain. To prepare for the worst, shippers should adopt a similar strategy to the other potential January threats: collaborate early, secure freight, diversify supply chains, and monitor policy changes.
According to Averitt, companies can cushion the impact of all three challenges by deploying a seamless, end-to-end solution covering the entire path from customs clearance to final-mile delivery. That strategy can help businesses to store inventory closer to their customers, mitigate delays, and reduce costs associated with supply chain disruptions. And combined with proactive communication and real-time visibility tools, the approach allows companies to maintain control and keep their supply chains resilient in the face of global uncertainties, Averitt said.
Bloomington, Indiana-based FTR said its Trucking Conditions Index declined in September to -2.47 from -1.39 in August as weakness in the principal freight dynamics – freight rates, utilization, and volume – offset lower fuel costs and slightly less unfavorable financing costs.
Those negative numbers are nothing new—the TCI has been positive only twice – in May and June of this year – since April 2022, but the group’s current forecast still envisions consistently positive readings through at least a two-year forecast horizon.
“Aside from a near-term boost mostly related to falling diesel prices, we have not changed our Trucking Conditions Index forecast significantly in the wake of the election,” Avery Vise, FTR’s vice president of trucking, said in a release. “The outlook continues to be more favorable for carriers than what they have experienced for well over two years. Our analysis indicates gradual but steadily rising capacity utilization leading to stronger freight rates in 2025.”
But FTR said its forecast remains unchanged. “Just like everyone else, we’ll be watching closely to see exactly what trade and other economic policies are implemented and over what time frame. Some freight disruptions are likely due to tariffs and other factors, but it is not yet clear that those actions will do more than shift the timing of activity,” Vise said.
The TCI tracks the changes representing five major conditions in the U.S. truck market: freight volumes, freight rates, fleet capacity, fuel prices, and financing costs. Combined into a single index indicating the industry’s overall health, a positive score represents good, optimistic conditions while a negative score shows the inverse.