The relentless drive for warehouse efficiency is sparking new interest in self-driving vehicles. For those wondering which type to buy, experts say forget the labels and focus on capabilities.
Ben Ames has spent 20 years as a journalist since starting out as a daily newspaper reporter in Pennsylvania in 1995. From 1999 forward, he has focused on business and technology reporting for a number of trade journals, beginning when he joined Design News and Modern Materials Handling magazines. Ames is author of the trail guide "Hiking Massachusetts" and is a graduate of the Columbia School of Journalism.
The manual warehouse is fast becoming a thing of the past. These days, DCs are increasingly turning to automation as they struggle to cope with a surging tide of e-commerce orders in the midst of a worsening labor shortage.
Vendors have stepped up to the demand. As a result, DC managers now have an unprecedented array of automated material handling systems to choose from. Options range from classic conveyor belts to automated storage and retrieval systems (AS/RS) and now to the latest entrant, autonomous mobile robots (AMRs).
But, wait a minute. As any warehousing veteran can tell you, mobile robots are hardly new to the DC. Robots known as "automated guided vehicles," or AGVs, have been a fixture in many operations for decades, ferrying goods throughout the facility without the benefit of a driver.
So how does this new entrant, the AMR, differ from the AGV? And how does it fit into the big picture where materials movement technology is concerned? Does it represent the way of the future, or is it just a new variation on a well-established theme?
Industry experts say it depends on how you define the terms. Recent technology breakthroughs have improved the capabilities of both AGVs and AMRs, blurring the lines between them and creating a marketplace full of diverse tools that can be matched to almost any logistics task.
SMART VEHICLES GET SMARTER
To understand the difference between traditional AGVs and the newer AMRs, it helps to know a little about the vehicles' background. The AGV has traditionally been defined as a kind of robotic cart that lifts and ferries loads around a facility without human assistance. Although it doesn't rely on a driver for navigation, it does require external guidance—electric wire buried in the concrete floor, lines of magnets, tape, beacons, or reflectors. The main rap on these vehicles is that changing that path—say, to accommodate a new product, a new client, a new facility, or a reconfigured workflow—can be time-consuming and expensive.
The AMR, by contrast, is a self-guided vehicle outfitted with software and intelligent sensors that enable it to navigate its own path around the DC. It's that capability for onboard navigation that sets the new breed of self-driving warehouse vehicles apart from their predecessors, said John Santagate, research director for commercial service robotics at IDC Manufacturing Insights, an analyst group based in Framingham, Mass.
By using suites of onboard sensors and processors, AMRs can perform complex tasks like simultaneous location and mapping (SLAM) to "learn" their way around a new site. They rely on artificial intelligence (AI) to sense and respond to a changing environment, and to optimize their routes.
Some AMRs can also leverage "swarm intelligence," meaning they're able to exchange data with other units through wireless networks and adjust their operations based on what they learn. That means they can, say, adjust their paths based on information received from other units, much the way drivers do on a crowded highway, or even "teach" new arrivals how to navigate a particular warehouse. That's a key advantage of those models and some next-gen AGVs—one that conventional AGVs can't match.
A PEACEFUL COEXISTENCE?
There's no doubt that AMRs are the hot technology of the moment, as indicated by high-profile deals like transportation and logistics giant XPO Logistics Inc.'s recent purchase of 5,000 mobile robots from GreyOrange Pte. Ltd. for use in e-commerce fulfillment.
That notwithstanding, AMRs are still a young, emerging technology, according to IDC's 2018 Autonomous Mobile Robots in the Warehouse and Fulfillment Center MaturityScape Benchmark Survey, which looks at the current state of AMR deployments in fulfillment operations. The study showed that 47.2 percent of users were still at the "ad hoc" or "opportunistic" level of AMR adoption, running only sporadic or pilot programs, while 33.8 percent were at the middle "repeatable" stage, where they are just beginning to expand their deployments. That leaves 15.2 percent at the advanced "managed" stage of maturity, where they are achieving competitive advantage through AMRs, and just 3.8 percent at the fully "optimized" stage of widespread adoption, IDC found.
By contrast, AGVs are entrenched in many U.S. logistics facilities, with operations that have been running for decades and are on track to continue for years to come, Santagate said. In those cases, companies introducing AMRs into their operations will most likely use them in combination with AGVs and other automated equipment, with the units all working together in a symphony of machines.
Like Santagate, systems integrator Dematic, a division of German material handling giant Kion Group AG, doesn't see AGVs going away anytime soon. In a white paper titled Automated Guided Vehicles (AGVs) vs. Autonomous Mobile Robots (AMRs): Debunking the Myths, Dematic argues that AGVs will continue to fill an important role in the warehouse for some time to come, relieving human workers of nonvalue-added repetitive material movement tasks. Although some AMR proponents might give the impression that AGVs are antiquated and obsolete, that's misleading, the company says. Leaps in AGV technology in the last 10 years have added new weapons to their arsenal, including vision-based guidance, dynamic routing, and three-dimensional (3-D) sensors.
BLURRED LINES
In the meantime, the categories of mobile warehouse vehicles continue to evolve, muddying the waters for those who contend AMRs are defined by the navigation sensors they carry, said Jeff Christensen, vice president of products at Seegrid Corp., an AGV firm that makes vision-guided vehicles.
Seegrid sees a future where autonomous onboard navigation will become a requirement for new warehouse vehicles. "Dependent navigation is very predictable; when people buy that, they're not buying a cool machine; they're buying predictability," Christensen said. "But in DCs where every pallet is going a different route to a different location, fixed routes are untenable" because of guidepath infrastructure limitations.
The market could soon have greater clarity on the navigation question, he said. Today's warehouse operators are being squeezed by multiple market forces, including a DC labor shortage; the challenges of filling small, multiple-SKU (stock-keeping unit) orders; and shorter delivery times demanded by e-commerce customers, he noted. In an effort to address those pain points, companies are using whatever technology can produce the quickest results. "There's a substantial installed base of AGVs and people will continue to run them maybe until they go into the ground," Christensen said. "But for companies looking to make a decision today, picking something with fixed guidance is nine times out of 10 not the right choice."
AGV vendor and systems integrator Knapp AG sees many of the same trends playing out, according to Kevin Reader, the company's vice president of business development and marketing. In response, the company has introduced AGVs whose capabilities extend far beyond following fixed paths, he noted. For example, Knapp's current family of "Open Shuttles" can dynamically sense obstacles in their path and communicate with other AGVs, Reader said.
In the end, he said, vehicle choice isn't just about the best way to automate a single process. It requires a more holistic view of the workflow. "You have to look at [vehicles] in the context of the whole operation, and then calculate the cost per order or cost per case or cost per tote, depending on your operation," Reader said.
To that point, he added that regardless of the type of vehicle you pick, the greatest gains are likely to come from combining the automated equipment with software-based approaches to warehousing distribution. Today's DCs, he noted, are poised to start reaping big benefits from tools like predictive modeling, analytics, big data, actionable insights, Internet of Things-enabled predictive maintenance, bottleneck detection, and AI.
EVERY INSTRUMENT PLAYS ITS PART
Fetch Robotics' Freight500 autonomous mobile robot is designed to transport workloads up to 1,100 lbs.
When it comes to vehicle choice, it may not necessarily be an "either-or" question. Different approaches each have their own benefits, says Melonee Wise, CEO of AMR vendor Fetch Robotics, a fast-growing firm that recently landed a deal with industrial heavyweight Honeywell International Inc. to supply its AMRs for e-commerce DCs.
According to Wise, the fast-growing AMR sector has produced a range of distinct vehicle designs. Some AMRs are engineered exclusively for order picking, essentially turning the DC into a virtual AS/RS by providing mobile access to static inventory. Others support more varied applications, including tasks associated with processes like forward picking, reverse logistics, and manufacturing.
Given the wide range of potential applications, these AMRs don't even compete directly with each other, much less with existing automated platforms. "Just because we now have AMRs, do you think AS/RSs are going away? I don't," Wise said.
The key challenge for customers is to pick the right robotic technology for the problem they're trying to solve, she said. For example, it would be a waste of resources to dedicate a fast-moving robot to a rack of seldom-needed goods because the AMR would sit idle much of the time awaiting a call. "Imagine if Amazon put slow-moving goods in a case with a Kiva?" Wise asked, referring to the squat orange robots used in Amazon.com's DCs to ferry products to order pickers. "You'd have a really expensive, million-dollar battery-filled paperweight!"
AMRs may have made a flashy debut on the self-driving vehicle scene in recent months, but AGVs are still the king of the prom, if popularity is measured by installed base and total miles driven. Only time will tell whether there's room for both types of driverless vehicles in the logistics universe. But experts agree that they show great promise for solving some of today's most intractable logistics challenges, as business pressures and new technologies continue to drive the development of intelligent, flexible self-driving platforms.
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
Global trade will see a moderate rebound in 2025, likely growing by 3.6% in volume terms, helped by companies restocking and households renewing purchases of durable goods while reducing spending on services, according to a forecast from trade credit insurer Allianz Trade.
The end of the year for 2024 will also likely be supported by companies rushing to ship goods in anticipation of the higher tariffs likely to be imposed by the coming Trump administration, and other potential disruptions in the coming quarters, the report said.
However, that tailwind for global trade will likely shift to a headwind once the effects of a renewed but contained trade war are felt from the second half of 2025 and in full in 2026. As a result, Allianz Trade has throttled back its predictions, saying that global trade in volume will grow by 2.8% in 2025 (reduced by 0.2 percentage points vs. its previous forecast) and 2.3% in 2026 (reduced by 0.5 percentage points).
The same logic applies to Allianz Trade’s forecast for export prices in U.S. dollars, which the firm has now revised downward to predict growth reaching 2.3% in 2025 (reduced by 1.7 percentage points) and 4.1% in 2026 (reduced by 0.8 percentage points).
In the meantime, the rush to frontload imports into the U.S. is giving freight carriers an early Christmas present. According to Allianz Trade, data released last week showed Chinese exports rising by a robust 6.7% y/y in November. And imports of some consumer goods that have been threatened with a likely 25% tariff under the new Trump administration have outperformed even more, growing by nearly 20% y/y on average between July and September.