When companies go to solve a packaging problem—like figuring out how to keep their boxes from getting crushed in transit—they often focus on just one aspect of their packaging. They can get a better, more complete answer by looking at the entire unit load.
Susan Lacefield has been working for supply chain publications since 1999. Before joining DC VELOCITY, she was an associate editor for Supply Chain Management Review and wrote for Logistics Management magazine. She holds a master's degree in English.
It's a mistake a lot of companies make: thinking about their packaging in a fragmented fashion. What type of dunnage to use is considered independently from what type of box to use. The type of box is considered independently of what type of pallet to use. The pallet is considered independently of what type of stretch wrap or packaging film to use.
This fragmented approach can lead to a number of problems. First, companies risk over-engineering their packaging—in other words, they end up using more, higher-quality packaging than is strictly necessary, which inflates their costs. Or the reverse happens: Looking to save money on packaging, companies start reducing the amount or quality of a particular piece of packing material without considering how the change will affect the unit load's protective capabilities. Or, if they're trying to reduce product damage, they risk focusing on the wrong part of the packaging. For example, if their corrugated boxes are consistently being crushed during transit, they might assume the fix is switching to a higher-quality box, when changing their pallet or stretch wrap might be a more cost-effective solution.
A better approach, according to many experts, is to think about packaging holistically and look at what's known as the entire "unit load." Unit load optimization and design considers the combination of the product on the pallet with all of the materials used to protect and secure it, including packaging material, corner posts, reinforcers, packaging film, and straps. "It's making sure that [all components of the] load work together efficiently," says Laszlo Horvath, director of the Center for Packaging and Unit Load Design at Virginia Tech.
Focusing on the unit load gives companies a better idea of how a product will stand up to supply chain-related stresses than they can get by simply testing the primary packaging (the first layer of packaging), according to Ben Eugrin, director of the supply chain solutions group at CHEP, a pallet pooling specialist that also provides unit load optimization solutions. "Remember that the unit load is where a product spends 90 percent of its life," he says. "It's only really broken down at the very end of the chain. So it's critical to be able to test that entire unit load—not only to make sure that it's going to make it all the way through without falling apart, but also to prevent weakening that could cause damage down the line."
SIMULATE AND TEST
Unit load optimization is typically done through computer simulation and physical testing in a lab setting, which is more efficient and effective than conducting trial and error tests on actual shipments. These testing services are available through some packaging and pallet companies, specialty consulting firms, and research universities with packaging schools.
As for how companies use these services, clients sometimes turn to labs for answers to straightforward questions, like "What's the actual load-carrying capacity of the pallet?" or "How much product can be stacked on this pallet?" Other times, they're looking for answers to more open-ended questions such as how to reduce product damage, how to increase unit load stability, how to reduce overall packaging and freight costs, or how well a new packaging solution will work.
First steps
Interested in improving your packaging but not ready to invest in simulation and testing? You can start by making sure you're following some basic industry best practices.
Start by sizing up how the product sits on the pallet. If there is too much overhang or underhang—greater than half an inch—you risk having your product damaged during transit. Also make sure your product cannot fall through the spaces between the boards of the pallet.
Next, make sure that your load is stable. CHEP recommends keeping the height of the unit load to under 55 inches to ensure that it doesn't become top heavy. Also check to see that the load is secured to the pallet.
Once you have these basics in place, it's time for a test drive. Tom Blanck of Chainalytics suggests running your pallet loads through your own "rough handling" tests on the dock to see how your packaging holds up.
For example, a tissue manufacturer that was contemplating a switch from high-quality corrugated to recycled corrugated for its packaging contracted with CHEP to run some tests to see how the two stacked up. After nearly a week of testing at CHEP's Innovation Center, a state-of-the-art testing facility in Orlando, Fla., the company's engineers concluded that the recycled version protected the contents just as well as the high-quality material did. Based on the results, the manufacturer made the switch, which ended up saving it $300,000 annually.
When it comes to testing, the more comprehensive, the better. But companies don't always heed that advice. When shippers go to test or model various packaging alternatives, one thing they commonly overlook is the pallet—to be specific, what pallet would be best for their product, according to Horvath. There's a mistaken belief that all pallets are the same, when in actuality, quality can vary greatly. So when the Virginia Tech Center for Packaging and Unit Load Design analyzes a unit load, it may look at such details as what size pallet should be used, how thick the corner boards should be, how stiff the boards should be, and how big the space between the boards should be.
Designing (or specifying) the optimal pallet isn't always as cut and dried as it sounds, Horvath notes. "If we are designing a pallet for a specific unit load, then it's relatively simple, but if we are designing for a range of product loads, as is often the case, then it can be a rather complex proposition," he says. In such cases, the lab will either use a flexible air bag to simulate the worst-case scenario or work with the client to determine which product would put the most stress on the pallet.
For best results, the testing or modeling protocol should factor in the stresses the unit load will encounter during the distribution process, says Tom Blanck, principal for the consulting company Chainalytics, which provides packaging optimization services. "One thing that gets overlooked is the dynamics of the situation—the fact that the payload and the pallets are in active movement, constantly shifting, changing, and being subjected to shocks and supply chain hazards," he says.
To determine whether the product and its packaging can withstand the rigors of transportation and storage, lab testing will need to re-create conditions under which the unit load will be transported, stacked, and loaded, says Mohammed Ansari, manager of CHEP's Innovation Center. For example, in the lab, the test unit load may be put on a platform that shakes it to replicate conditions inside a trailer barreling down a bumpy road. Or unit loads might be stacked on top of one another in a rack to simulate the stresses they will be subjected to during warehouse storage. The tests might even include re-creating the atmospheric conditions the unit load will encounter if it's stored outside or in a freezer.
BENEFITS AND BARRIERS
Proponents of unit load analysis and testing, such as Blanck, acknowledge that the process is "not inexpensive" but insist that "a test is worth a thousand words" because it allows you to see how all of your packaging will perform under real-world conditions. It also saves the time and costs associated with making packaging changes and waiting to see how the modified version performs in actual use.
Eugrin agrees. "The question really is: Can you afford not to spend money on unit load optimization and testing?" he says. "The alternative is rolling the dice, trying to do it yourself, and coming up with the wrong answer." That wrong answer may result in damaged product or an unstable load that could topple over and injure someone.
UPSTANDING PLAYER: Technicians at CHEP's Innovation Center use this inclined impact test unit to assess load stability. After being placed on the blue carriage, a unit load is dropped and hit along all four sides to see if it will remain upright or topple over.
In addition to reducing damage, testing can help companies achieve their sustainability goals. Simulations and tests allow them to make informed decisions about reducing packaging or fitting more product on a pallet.
There can be some hassles involved, however. For example, if products are high-value, companies will have to create a "dummy load" for the testing process rather than risk damaging actual goods. This can be time-consuming and expensive, Blanck cautions.
Of course, all the simulation and testing in the world won't do you much good if you don't apply what you learn and share the data you collect. Blanck recalls working with one client that was experiencing problems with product damage. The client came up with several new packaging designs and asked Chainalytics to run some performance tests. What Blanck and his team found, however, was that the company did not need to change its packaging. Instead, it simply needed to do a better job of following its existing packaging requirements and best practices. (For some steps you can take before embarking on full-blown testing, see the accompanying sidebar.)
Indeed, Pat Lancaster, chairman of stretch-wrapping equipment maker Lantech, goes so far as to say that the problem is not so much that the industry lacks information about how to create optimized unit loads, as that the knowledge is not being applied.
Instead of just focusing on creating the perfect load, Lancaster urges companies to establish a "feedback loop" that ensures that information about damage levels gets back to the plant or DC. "If plants understood the damage level, they would be able to implement fixes," he says.
Either way, getting packaging right will become an increasingly high-stakes endeavor as supply chains amp up their efforts to run leaner and with less waste. "Supply chain systems have gotten so good that they are like fine racing engines," Blanck says. "They now run faster, but they are also finicky. Everything needs to be right for them to run right. Bad packaging can clog up the system like bad gas in a good engine."
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."