When companies go to solve a packaging problem—like figuring out how to keep their boxes from getting crushed in transit—they often focus on just one aspect of their packaging. They can get a better, more complete answer by looking at the entire unit load.
Susan Lacefield has been working for supply chain publications since 1999. Before joining DC VELOCITY, she was an associate editor for Supply Chain Management Review and wrote for Logistics Management magazine. She holds a master's degree in English.
It's a mistake a lot of companies make: thinking about their packaging in a fragmented fashion. What type of dunnage to use is considered independently from what type of box to use. The type of box is considered independently of what type of pallet to use. The pallet is considered independently of what type of stretch wrap or packaging film to use.
This fragmented approach can lead to a number of problems. First, companies risk over-engineering their packaging—in other words, they end up using more, higher-quality packaging than is strictly necessary, which inflates their costs. Or the reverse happens: Looking to save money on packaging, companies start reducing the amount or quality of a particular piece of packing material without considering how the change will affect the unit load's protective capabilities. Or, if they're trying to reduce product damage, they risk focusing on the wrong part of the packaging. For example, if their corrugated boxes are consistently being crushed during transit, they might assume the fix is switching to a higher-quality box, when changing their pallet or stretch wrap might be a more cost-effective solution.
A better approach, according to many experts, is to think about packaging holistically and look at what's known as the entire "unit load." Unit load optimization and design considers the combination of the product on the pallet with all of the materials used to protect and secure it, including packaging material, corner posts, reinforcers, packaging film, and straps. "It's making sure that [all components of the] load work together efficiently," says Laszlo Horvath, director of the Center for Packaging and Unit Load Design at Virginia Tech.
Focusing on the unit load gives companies a better idea of how a product will stand up to supply chain-related stresses than they can get by simply testing the primary packaging (the first layer of packaging), according to Ben Eugrin, director of the supply chain solutions group at CHEP, a pallet pooling specialist that also provides unit load optimization solutions. "Remember that the unit load is where a product spends 90 percent of its life," he says. "It's only really broken down at the very end of the chain. So it's critical to be able to test that entire unit load—not only to make sure that it's going to make it all the way through without falling apart, but also to prevent weakening that could cause damage down the line."
SIMULATE AND TEST
Unit load optimization is typically done through computer simulation and physical testing in a lab setting, which is more efficient and effective than conducting trial and error tests on actual shipments. These testing services are available through some packaging and pallet companies, specialty consulting firms, and research universities with packaging schools.
As for how companies use these services, clients sometimes turn to labs for answers to straightforward questions, like "What's the actual load-carrying capacity of the pallet?" or "How much product can be stacked on this pallet?" Other times, they're looking for answers to more open-ended questions such as how to reduce product damage, how to increase unit load stability, how to reduce overall packaging and freight costs, or how well a new packaging solution will work.
First steps
Interested in improving your packaging but not ready to invest in simulation and testing? You can start by making sure you're following some basic industry best practices.
Start by sizing up how the product sits on the pallet. If there is too much overhang or underhang—greater than half an inch—you risk having your product damaged during transit. Also make sure your product cannot fall through the spaces between the boards of the pallet.
Next, make sure that your load is stable. CHEP recommends keeping the height of the unit load to under 55 inches to ensure that it doesn't become top heavy. Also check to see that the load is secured to the pallet.
Once you have these basics in place, it's time for a test drive. Tom Blanck of Chainalytics suggests running your pallet loads through your own "rough handling" tests on the dock to see how your packaging holds up.
For example, a tissue manufacturer that was contemplating a switch from high-quality corrugated to recycled corrugated for its packaging contracted with CHEP to run some tests to see how the two stacked up. After nearly a week of testing at CHEP's Innovation Center, a state-of-the-art testing facility in Orlando, Fla., the company's engineers concluded that the recycled version protected the contents just as well as the high-quality material did. Based on the results, the manufacturer made the switch, which ended up saving it $300,000 annually.
When it comes to testing, the more comprehensive, the better. But companies don't always heed that advice. When shippers go to test or model various packaging alternatives, one thing they commonly overlook is the pallet—to be specific, what pallet would be best for their product, according to Horvath. There's a mistaken belief that all pallets are the same, when in actuality, quality can vary greatly. So when the Virginia Tech Center for Packaging and Unit Load Design analyzes a unit load, it may look at such details as what size pallet should be used, how thick the corner boards should be, how stiff the boards should be, and how big the space between the boards should be.
Designing (or specifying) the optimal pallet isn't always as cut and dried as it sounds, Horvath notes. "If we are designing a pallet for a specific unit load, then it's relatively simple, but if we are designing for a range of product loads, as is often the case, then it can be a rather complex proposition," he says. In such cases, the lab will either use a flexible air bag to simulate the worst-case scenario or work with the client to determine which product would put the most stress on the pallet.
For best results, the testing or modeling protocol should factor in the stresses the unit load will encounter during the distribution process, says Tom Blanck, principal for the consulting company Chainalytics, which provides packaging optimization services. "One thing that gets overlooked is the dynamics of the situation—the fact that the payload and the pallets are in active movement, constantly shifting, changing, and being subjected to shocks and supply chain hazards," he says.
To determine whether the product and its packaging can withstand the rigors of transportation and storage, lab testing will need to re-create conditions under which the unit load will be transported, stacked, and loaded, says Mohammed Ansari, manager of CHEP's Innovation Center. For example, in the lab, the test unit load may be put on a platform that shakes it to replicate conditions inside a trailer barreling down a bumpy road. Or unit loads might be stacked on top of one another in a rack to simulate the stresses they will be subjected to during warehouse storage. The tests might even include re-creating the atmospheric conditions the unit load will encounter if it's stored outside or in a freezer.
BENEFITS AND BARRIERS
Proponents of unit load analysis and testing, such as Blanck, acknowledge that the process is "not inexpensive" but insist that "a test is worth a thousand words" because it allows you to see how all of your packaging will perform under real-world conditions. It also saves the time and costs associated with making packaging changes and waiting to see how the modified version performs in actual use.
Eugrin agrees. "The question really is: Can you afford not to spend money on unit load optimization and testing?" he says. "The alternative is rolling the dice, trying to do it yourself, and coming up with the wrong answer." That wrong answer may result in damaged product or an unstable load that could topple over and injure someone.
UPSTANDING PLAYER: Technicians at CHEP's Innovation Center use this inclined impact test unit to assess load stability. After being placed on the blue carriage, a unit load is dropped and hit along all four sides to see if it will remain upright or topple over.
In addition to reducing damage, testing can help companies achieve their sustainability goals. Simulations and tests allow them to make informed decisions about reducing packaging or fitting more product on a pallet.
There can be some hassles involved, however. For example, if products are high-value, companies will have to create a "dummy load" for the testing process rather than risk damaging actual goods. This can be time-consuming and expensive, Blanck cautions.
Of course, all the simulation and testing in the world won't do you much good if you don't apply what you learn and share the data you collect. Blanck recalls working with one client that was experiencing problems with product damage. The client came up with several new packaging designs and asked Chainalytics to run some performance tests. What Blanck and his team found, however, was that the company did not need to change its packaging. Instead, it simply needed to do a better job of following its existing packaging requirements and best practices. (For some steps you can take before embarking on full-blown testing, see the accompanying sidebar.)
Indeed, Pat Lancaster, chairman of stretch-wrapping equipment maker Lantech, goes so far as to say that the problem is not so much that the industry lacks information about how to create optimized unit loads, as that the knowledge is not being applied.
Instead of just focusing on creating the perfect load, Lancaster urges companies to establish a "feedback loop" that ensures that information about damage levels gets back to the plant or DC. "If plants understood the damage level, they would be able to implement fixes," he says.
Either way, getting packaging right will become an increasingly high-stakes endeavor as supply chains amp up their efforts to run leaner and with less waste. "Supply chain systems have gotten so good that they are like fine racing engines," Blanck says. "They now run faster, but they are also finicky. Everything needs to be right for them to run right. Bad packaging can clog up the system like bad gas in a good engine."
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.
The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.
According to Starboard, the logistics industry is under immense pressure to adapt to the growing complexity of global trade, which has hit recent hurdles such as the strike at U.S. east and gulf coast ports. That situation calls for innovative solutions to streamline operations and reduce costs for operators.
As a potential solution, Starboard offers its flagship product, which it defines as an AI-based transportation management system (TMS) and rate management system that helps mid-sized freight forwarders operate more efficiently and win more business. More broadly, Starboard says it is building the virtual infrastructure for global trade, allowing freight companies to leverage AI and machine learning to optimize operations such as processing shipments in real time, reconciling invoices, and following up on payments.
"This investment is a pivotal step in our mission to unlock the power of AI for our customers," said Sumeet Trehan, Co-Founder and CEO of Starboard. "Global trade has long been plagued by inefficiencies that drive up costs and reduce competitiveness. Our platform is designed to empower SMB freight forwarders—the backbone of more than $20 trillion in global trade and $1 trillion in logistics spend—with the tools they need to thrive in this complex ecosystem."