Ben Ames has spent 20 years as a journalist since starting out as a daily newspaper reporter in Pennsylvania in 1995. From 1999 forward, he has focused on business and technology reporting for a number of trade journals, beginning when he joined Design News and Modern Materials Handling magazines. Ames is author of the trail guide "Hiking Massachusetts" and is a graduate of the Columbia School of Journalism.
The rise of robotics is one of the fastest-growing trends in logistics, with announcements of warehouses that have invested in robots or autonomous vehicles coming almost weekly. Distribution center managers are now using robotics and advanced automated equipment to solve challenges at every stage of the material handling game.
But how exactly will all these new bots fit into the typical DC? In their rush to forge a robotic link in the supply chain, planners are still trying to predict what sort of buildings and infrastructure they will need to support the complex machines.
A century ago, architects wrestled with a similar issue when the industrial revolution brought widescale changes to residential housing design. Now that most people commute by automobile instead of horseback, modern homes have attached two-car garages instead of hay barns and stables.
So will the warehouses of 2050 look different because they're designed to accommodate squadrons of robots instead of shifts of human workers? (After all, robots don't need restrooms, but they might need extra electrical outlets.) In fact, warehouse design is already evolving to accommodate robots' needs, and experts say that a few simple changes can make all the difference.
THE BIG EMPTY BOX
The easiest way to go robotic is to start from scratch, incorporating any required features like charging stations, Wi-Fi networks, and smooth floors into the design of a brand-new building, says Doug Rabeneck, director in the operations excellence practice at business and technology consulting firm West Monroe Partners. That approach is clearly more expensive than adding robotics to an existing warehouse, but it avoids the challenges of overlaying a new robotic system onto the existing work force and systems.
Despite the expense, that approach was common 20 years ago, when early generations of automated guided vehicles (AGVs) required wire-guided controls buried in cement warehouse floors so the vehicles could follow predetermined routes like streetcars moving through a city, Rabeneck says.
More recent offerings—such as the robots developed by Amazon Robotics, Clearpath Robotics, and Locus Robotics—require less infrastructure, using unobtrusive technologies like "lidar" and vision systems for navigation instead of relying on permanent hardware like wires, magnets, or beacons. Thanks to those advances, companies are finding it easier to add robots to a warehouse, whether the building is new or old.
"Your building just needs to be a big empty box," Rabeneck says. "To retrofit it, you might need a lot of electronics and communications up on the roof, like wireless router boxes, and either a server in one corner of the facility or communications through the cloud. And you'd probably need charging stations for the units."
GETTING ROBOT-READY
In addition to wiring a building with advanced charging and communications systems, several basic details in the design and layout of a facility can affect its readiness to host material handling robots, says Tom Galluzzo, founder and CEO of Pittsburgh-based Iam Robotics.
"The name of the game is optimizing a solution to whatever your goal is, whether that's an each-picking solution or [one where machines] collaborate with the work force," Galluzzo says. But the needs of people aren't always aligned with those of the machines, he says. "For example, people usually like working in a temperature of 70 degrees, whereas robots might want it to be 50 degrees. If you're going to use both manual and robotic solutions, you need a happy medium."
Even interior design can affect the choice of robotics. For instance, people will gladly walk around on carpeting all day, but robots don't like carpets, Galluzzo says.
"We look for pristine, bare, flat concrete floors," says Galluzzo. "We've been in places with hundred-year-old wooden floors and they're really beat up. To drive robots on that would be like driving your car on cobblestones all day long."
The layout of a DC is also important, since most robots need to be insulated from the elements, not operating anywhere near a loading dock where rain or snow could blow in and affect their electronics, he says.
Finally, just as any building has features dedicated to its human workers' needs—such as a soda machine or a break room—a warehouse designed for robots would need its own "amenities." For instance, an automated DC design could call for a reinforced power grid to handle the extra charging stations and a redundant electric generator so the building doesn't shut down every time a storm knocks the power out.
Safety is another crucial consideration in a robotic fulfillment facility. Recent laptop and smartphone recalls have highlighted the potential for lithium-ion batteries to overheat and even spark fires. A lot of robots today use similar lithium-ion battery technology, which not only raises the question of fire safety but also has implications for operations where DC workers are trained to safely handle the lead-acid batteries commonly used in forklifts but not their lithium-ion counterparts.
"Lithium-ion batteries need a little more care and maintenance than lead-acid," Galluzzo says. "Because you have all that energy density [with lithium-ion], you need to be sure you have your safety precautions in line, like fire safety. What it comes down to is that you're storing more energy in a smaller package."
To address that issue and create a safer working environment, engineers are already working on a next generation of batteries designed for long life and safe operation. The new designs use lithium iron phosphate (LiFePO4) cHemiätry instead of the current lithium polymer designs, Galluzzo says.
BOOSTING STORAGE DENSITY
Once a warehouse has satisfied those basic design requirements, it might start to look a lot different inside, as the introduction of robots tends to change inventory storage patterns. A warehouse with automated storage and retrieval systems (AS/RS), for instance, can pack more inventory into a given space than one that relies on human pickers, since computer-guided retrieval vehicles can easily navigate aisles with just an inch or two of clearance, Rabeneck says.
Similarly, many goods-to-person robotic systems allow for higher-density storage than a warehouse that has to leave aisles between racks for human pickers or forklifts. But some of that advantage is lost if the bots also need a dedicated staging area to place racks of products, which can be the case in operations that use robots to deliver racks of products to a human picker for selection, says Bruce Welty, chairman and founder of warehouse automation vendor Locus Robotics Inc. and fulfillment specialist Quiet Logistics Inc. One way around that problem is to adopt a different goods-to-person strategy, using mobile robots to collect only the items needed for orders—as opposed to entire racks—and deliver them to humans at packing stations, Welty says.
Future developments in robotic technologies will doubtless continue to influence warehouse design in terms of the patterns of inventory storage, the flow of goods between work stations, and the interactions between robots and human associates.
THE ECONOMICS OF ROBOTICS
Likewise, the rise of robotics could affect the actual shape of the warehouse. For instance, a company planning to deploy rolling robots like AGVs might seek a vast one-story building, while a company planning to use robotic cranes might want a facility with extra vertical space.
When it goes to automate a facility, UPS Inc. considers each building's space, capacity, volume, and velocity of throughput, says Frank Perez, vice president of industrial engineering at UPS Global Logistics & Distribution. "Automation is a significant capital investment," Perez says. "If you're considering automation with a longer ROI [return on investment], you need to have a good growth strategy. When we evaluate real estate, if a DC is landlocked, it's a great opportunity to use automation to drive density and efficiency within the existing footprint."
If a plan calls for increasing density by creating more vertical storage, the company would choose a robotic solution such as an AS/RS, goods-to-person system, or cranes, as opposed to AGVs that are designed to roll across wide, flat spaces, he says.
Those considerations may sound pedestrian compared with the leading-edge technology that makes a robot tick, but the need to stay profitable carries a lot of weight when it comes to choosing the best type of automated material handling equipment for a facility and picking the best facility to fit the robot.
"We have just begun to scratch the surface as an industry," Iam Robotics' Galluzzo says. The same could be said about the logistics industry's evolution to include advanced robotics in buildings originally designed for people and goods.
Autonomous forklift maker Cyngn is deploying its DriveMod Tugger model at COATS Company, the largest full-line wheel service equipment manufacturer in North America, the companies said today.
By delivering the self-driving tuggers to COATS’ 150,000+ square foot manufacturing facility in La Vergne, Tennessee, Cyngn said it would enable COATS to enhance efficiency by automating the delivery of wheel service components from its production lines.
“Cyngn’s self-driving tugger was the perfect solution to support our strategy of advancing automation and incorporating scalable technology seamlessly into our operations,” Steve Bergmeyer, Continuous Improvement and Quality Manager at COATS, said in a release. “With its high load capacity, we can concentrate on increasing our ability to manage heavier components and bulk orders, driving greater efficiency, reducing costs, and accelerating delivery timelines.”
Terms of the deal were not disclosed, but it follows another deployment of DriveMod Tuggers with electric automaker Rivian earlier this year.
Manufacturing and logistics workers are raising a red flag over workplace quality issues according to industry research released this week.
A comparative study of more than 4,000 workers from the United States, the United Kingdom, and Australia found that manufacturing and logistics workers say they have seen colleagues reduce the quality of their work and not follow processes in the workplace over the past year, with rates exceeding the overall average by 11% and 8%, respectively.
The study—the Resilience Nation report—was commissioned by UK-based regulatory and compliance software company Ideagen, and it polled workers in industries such as energy, aviation, healthcare, and financial services. The results “explore the major threats and macroeconomic factors affecting people today, providing perspectives on resilience across global landscapes,” according to the authors.
According to the study, 41% of manufacturing and logistics workers said they’d witnessed their peers hiding mistakes, and 45% said they’ve observed coworkers cutting corners due to apathy—9% above the average. The results also showed that workers are seeing colleagues take safety risks: More than a third of respondents said they’ve seen people putting themselves in physical danger at work.
The authors said growing pressure inside and outside of the workplace are to blame for the lack of diligence and resiliency on the job. Internally, workers say they are under pressure to deliver more despite reduced capacity. Among the external pressures, respondents cited the rising cost of living as the biggest problem (39%), closely followed by inflation rates, supply chain challenges, and energy prices.
“People are being asked to deliver more at work when their resilience is being challenged by economic and political headwinds,” Ideagen’s CEO Ben Dorks said in a statement announcing the findings. “Ultimately, this is having a determinantal impact on business productivity, workplace health and safety, and the quality of work produced, as well as further reducing the resilience of the nation at large.”
Respondents said they believe technology will eventually alleviate some of the stress occurring in manufacturing and logistics, however.
“People are optimistic that emerging tech and AI will ultimately lighten the load, but they’re not yet feeling the benefits,” Dorks added. “It’s a gap that now, more than ever, business leaders must look to close and support their workforce to ensure their staff remain safe and compliance needs are met across the business.”
The “2024 Year in Review” report lists the various transportation delays, freight volume restrictions, and infrastructure repair costs of a long string of events. Those disruptions include labor strikes at Canadian ports and postal sites, the U.S. East and Gulf coast port strike; hurricanes Helene, Francine, and Milton; the Francis Scott key Bridge collapse in Baltimore Harbor; the CrowdStrike cyber attack; and Red Sea missile attacks on passing cargo ships.
“While 2024 was characterized by frequent and overlapping disruptions that exposed many supply chain vulnerabilities, it was also a year of resilience,” the Project44 report said. “From labor strikes and natural disasters to geopolitical tensions, each event served as a critical learning opportunity, underscoring the necessity for robust contingency planning, effective labor relations, and durable infrastructure. As supply chains continue to evolve, the lessons learned this past year highlight the increased importance of proactive measures and collaborative efforts. These strategies are essential to fostering stability and adaptability in a world where unpredictability is becoming the norm.”
In addition to tallying the supply chain impact of those events, the report also made four broad predictions for trends in 2025 that may affect logistics operations. In Project44’s analysis, they include:
More technology and automation will be introduced into supply chains, particularly ports. This will help make operations more efficient but also increase the risk of cybersecurity attacks and service interruptions due to glitches and bugs. This could also add tensions among the labor pool and unions, who do not want jobs to be replaced with automation.
The new administration in the United States introduces a lot of uncertainty, with talks of major tariffs for numerous countries as well as talks of US freight getting preferential treatment through the Panama Canal. If these things do come to fruition, expect to see shifts in global trade patterns and sourcing.
Natural disasters will continue to become more frequent and more severe, as exhibited by the wildfires in Los Angeles and the winter storms throughout the southern states in the U.S. As a result, expect companies to invest more heavily in sustainability to mitigate climate change.
The peace treaty announced on Wednesday between Isael and Hamas in the Middle East could support increased freight volumes returning to the Suez Canal as political crisis in the area are resolved.
The French transportation visibility provider Shippeo today said it has raised $30 million in financial backing, saying the money will support its accelerated expansion across North America and APAC, while driving enhancements to its “Real-Time Transportation Visibility Platform” product.
The funding round was led by Woven Capital, Toyota’s growth fund, with participation from existing investors: Battery Ventures, Partech, NGP Capital, Bpifrance Digital Venture, LFX Venture Partners, Shift4Good and Yamaha Motor Ventures. With this round, Shippeo’s total funding exceeds $140 million.
Shippeo says it offers real-time shipment tracking across all transport modes, helping companies create sustainable, resilient supply chains. Its platform enables users to reduce logistics-related carbon emissions by making informed trade-offs between modes and carriers based on carbon footprint data.
"Global supply chains are facing unprecedented complexity, and real-time transport visibility is essential for building resilience” Prashant Bothra, Principal at Woven Capital, who is joining the Shippeo board, said in a release. “Shippeo’s platform empowers businesses to proactively address disruptions by transforming fragmented operations into streamlined, data-driven processes across all transport modes, offering precise tracking and predictive ETAs at scale—capabilities that would be resource-intensive to develop in-house. We are excited to support Shippeo’s journey to accelerate digitization while enhancing cost efficiency, planning accuracy, and customer experience across the supply chain.”
Donald Trump has been clear that he plans to hit the ground running after his inauguration on January 20, launching ambitious plans that could have significant repercussions for global supply chains.
As Mark Baxa, CSCMP president and CEO, says in the executive forward to the white paper, the incoming Trump Administration and a majority Republican congress are “poised to reshape trade policies, regulatory frameworks, and the very fabric of how we approach global commerce.”
The paper is written by import/export expert Thomas Cook, managing director for Blue Tiger International, a U.S.-based supply chain management consulting company that focuses on international trade. Cook is the former CEO of American River International in New York and Apex Global Logistics Supply Chain Operation in Los Angeles and has written 19 books on global trade.
In the paper, Cook, of course, takes a close look at tariff implications and new trade deals, emphasizing that Trump will seek revisions that will favor U.S. businesses and encourage manufacturing to return to the U.S. The paper, however, also looks beyond global trade to addresses topics such as Trump’s tougher stance on immigration and the possibility of mass deportations, greater support of Israel in the Middle East, proposals for increased energy production and mining, and intent to end the war in the Ukraine.
In general, Cook believes that many of the administration’s new policies will be beneficial to the overall economy. He does warn, however, that some policies will be disruptive and add risk and cost to global supply chains.
In light of those risks and possible disruptions, Cook’s paper offers 14 recommendations. Some of which include:
Create a team responsible for studying the changes Trump will introduce when he takes office;
Attend trade shows and make connections with vendors, suppliers, and service providers who can help you navigate those changes;
Consider becoming C-TPAT (Customs-Trade Partnership Against Terrorism) certified to help mitigate potential import/export issues;
Adopt a risk management mindset and shift from focusing on lowest cost to best value for your spend;
Increase collaboration with internal and external partners;
Expect warehousing costs to rise in the short term as companies look to bring in foreign-made goods ahead of tariffs;
Expect greater scrutiny from U.S. Customs and Border Patrol of origin statements for imports in recognition of attempts by some Chinese manufacturers to evade U.S. import policies;
Reduce dependency on China for sourcing; and
Consider manufacturing and/or sourcing in the United States.
Cook advises readers to expect a loosening up of regulations and a reduction in government under Trump. He warns that while some world leaders will look to work with Trump, others will take more of a defiant stance. As a result, companies should expect to see retaliatory tariffs and duties on exports.
Cook concludes by offering advice to the incoming administration, including being sensitive to the effect retaliatory tariffs can have on American exports, working on federal debt reduction, and considering promoting free trade zones. He also proposes an ambitious water works program through the Army Corps of Engineers.