Batteries and chargers: something new under the sun
Two product categories that haven't changed much in the last 10 years—batteries and chargers for lift trucks and mobile devices—are undergoing a transformation.
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
If you've been operating under the assumption that the batteries and chargers you will use to power your forklifts and mobile devices a few years from now will be pretty much the same as the ones you've used for the past decade, you'd better sit down. We have news for you: This normally staid product category is on the verge of a revolution.
Advances in technology are fostering a wave of innovation in chargers and batteries—both very large ones, such as those for electric lift trucks, and very small ones for mobile devices like bar-code scanners, RFID readers, and printers. There's a lot going on, and we can't cover every recent development in this short article. (We've left out lithium-ion batteries for forklifts, which we covered in a separate article last year, for example.) But we can offer a few examples of the capabilities that are turning old-school equipment into 21st century tools. Here are five that bear watching:
1. Alerting users to problems as they happen. Electronic monitors and diagnostics for forklift battery utilization, power usage and output, and water levels have been around for a few years. Earlier generations required technicians to connect the batteries to a computer or testing device during troubleshooting or scheduled maintenance. Now, thanks to wireless communication, it's possible to transmit data in real time, alerting fleet managers when a problem first develops, not days or weeks after the fact.
A number of companies offer wireless battery monitoring systems that continuously collect, log, and report information while the battery is operating, producing readouts and alerts in real time.
These wireless battery monitoring systems continuously collect, log, and report information like temperature, water levels, charge intervals, and state of charge while the battery is operating. If a problem develops, they send an alert via e-mail or text message. This information is also delivered to an online pOréal or cloud-based software platform, where it can be analyzed and managed, allowing fleets to compare batteries' performance by truck, individual site, or a network of sites.
Some examples on the forklift OEM side are Raymond's iBattery, Crown Equipment Corp.'s Battery Health Monitor, Hyster Co.'s Hyster Battery Tracker, and Yale Materials Handling Corp.'s Yale Battery Vision products. Examples from independent providers include Advanced Charging Technologies' (ACT) Quantum and Power Designers USA's PowerCharge.NET comprehensive solutions, both of which monitor, report on, and manage batteries as well as chargers. (Many other products on the market monitor battery performance remotely; most track a more limited range of functions.)
2. Monitoring beyond the battery itself. Traditionally, exterior parts and components that aren't part of the forklift battery itself have been monitored by visual checks and physical tests during scheduled maintenance. Now, we're starting to see ongoing monitoring and remote data collection for such items.
One example is charge cables, which can suffer wear and tear while the lift truck is in use and from being plugged and unplugged repeatedly. Waiting for scheduled maintenance can be risky. "If they are not properly maintained, cables can suffer damage and even melt, which can affect the trucks and the goods, and most importantly, the safety of the driver," notes Jonah Teeter-Balin, director of product marketing for AeroVironment. To prevent such incidents, AeroVironment developed Connect RX for its PosiCharge ProCore chargers. This technology monitors cable connectors during charging sessions, shutting down the charge session and alerting the user if abnormalities are detected.
3. Becoming easier to use, control, and maintain. Two growing challenges for warehouses and DCs—the need to minimize downtime in a 24-7 operation and the difficulty of hiring and retaining qualified equipment technicians—are prompting manufacturers of forklift battery chargers to take some creative steps to address those concerns. Here are three examples:
AeroVironment's mobile app for its PosiCharge ProCore battery charger is one example of the trend toward making easier, more intuitive controls that are similar to consumer electronics.
A notable trend at the Modex 2016 trade show earlier this year was the shift toward simpler, more visually intuitive controls for material handling equipment. The aim is to make it easier for users to read, understand, program, and maintain equipment, requiring less specialized knowledge and simplifying the procedures. One example is AeroVironment's mobile app for its PosiCharge ProCore series of chargers. Through the app—the first for forklift chargers, the company says—users can set up new units, configure and update settings, view real-time information, and download data from the charger using a smartphone running iOS or Android. The intuitively designed app also has the ability to save and repeat settings, which eliminates the need to repeat steps and screens to set up or reprogram multiple chargers.
Modular designs provide a high degree of flexibility while essentially eliminating downtime. This approach offers so many advantages, in fact, that it's fast becoming the norm. One example is Power Designers USA's aptly named Revolution series of high-frequency chargers. The chargers' multiple "plug and play" power modules let users scale the number of modules up or down to match the needed power output. And because each module operates independently, if one stops working, the others continue charging, so charging is not interrupted. According to Power Designers, which says it was the first to develop modular chargers, replacing a module is a simple matter of turning a few screws, re-energizing the charger, and entering a few keystrokes on a control panel. Other manufacturers that now offer modular chargers include Hawker Powersource, Advanced Charging Technologies, Eagle Eye Power Solutions, and Enatel/DC Power Technologies, to name a few.
Advancements in technology are also making it possible to use one charger for batteries of multiple types and sizes. Traditionally, operations with different types of batteries not only had to match them with the right kind of charger but also had to manually program the charger correctly—something that didn't always happen, notes Jim Lichtenberg, business manager for Ametek Prestolite Power. Now, though, some chargers are able to recognizedifferent types of batteries and automatically adjust the charge for the battery at hand. Prestolite Power, for example, developed its Auto Range Curve software for its Eclipse II charger, which allows the charger to identify the number of cells as well as accept a minimum and a maximum amp-hour capacity for the cell size. With the software, the charger evaluates the battery's response to the charge current and properly adjusts the curve throughout the charge cycle.
Other examples of chargers that can automatically recognize all types of lead-acid and lithium-ion batteries and charge the batteries to the proper setting include Power Designers' Revolution charger paired with its PowerTrac battery monitor and AeroVironment's ProCore chargers.
4. Revealing information that was not previously available. For users of the very small batteries in mobile devices like scanners and RFID (radio-frequency identification) readers, it's always been tough to quickly and accurately tell a "good" battery from a "bad" one. For instance, users may assume that a battery that charges quickly is a good one, but it could be charging quickly because it's older and has less capacity. As a result, they might have to change batteries during a shift or, because they think the problem is with the device itself, they might unnecessarily send the scanner or reader out for repair, says Larry Murray, CEO of Global Technology Systems Inc. (GTS), a provider of batteries and management services for mobile devices.
To address those problems, GTS developed a testing system it says can tell operators in less than five seconds whether a battery has sufficient juice for the job. The tester, about the size of a deck of cards, has two probes that touch the battery's terminal contacts. It puts a small charge into the battery, which rebounds to the tester; that information then downloads via Bluetooth to a smartphone app. A proprietary algorithm analyzes the results to determine the battery's state of health, and the app issues both visual and audible signals indicating whether the battery is "OK" or "not OK" to use. The data are also transmitted to GTS's cloud-based software for compilation and further analysis. According to Murray, this kind of aggregate data has never been available for mobile device batteries before. Once the company's database has grown sufficiently, GTS says, users will be able to compare performance among their own sites as well as against peers.
5. Getting more performance from the same size mobile device battery. When it comes to batteries for mobile devices, their small size can be both a blessing and a curse. On the one hand, they make the devices lighter and ergonomically comfortable to use. On the other hand, their size limits the amount of power they can provide over the course of a shift. Because many of today's devices incorporate more features and capabilities than their predecessors did, they tend to draw more power. For the most part, though, the size of the batteries and battery compartments haven't changed, so power may run out before the end of a shift, says Ken Murphy, COO of Impact Power Technologies, a supplier of batteries for mobile devices.
The goal, then, is to get more power and longer run times from the same size battery. Two factors will determine whether that's feasible, according to Murphy. The first is the battery's cHemiätry, which differs for each manufacturer. The second is the battery management system, which regulates the amount of power that goes into a battery while charging and the amount that comes out when in use. Find the perfect balance between input and output, and the battery will last much longer, Murphy explains. He and President Curt Quinter say their company has done just that, getting 20 to 25 percent more capacity into the same size battery pack and allowing the company to guarantee that its batteries will run a full shift. The combination of Japanese-made lithium-ion cells, which have the fewest impurities, together with a proprietary battery management system that prevents batteries from being overcharged or overdischarged makes that possible, they say.
WHAT'S NEXT?
The experts we consulted for this article foresee more innovations to come. Several mentioned Tesla's research and development efforts as potentially having an impact on industrial motive power. In fact, we're already seeing a migration of concepts from consumer electric vehicles to the industrial side. That's where AeroVironment, which has product lines in both areas, got the idea for its ProCore mobile app, for example.
Advancements could also come from unexpected quarters. Quinter notes that batteries built to operate in space run for years, and that researchers are working on a battery that's activated by salt water and could keep ocean buoys transmitting data for up to five years. "You don't know what scientists will stumble across or what combinations of exotic metals might prove useful in the future," he says. "Sooner or later, somebody's going to hit on one that will make lithium-ion batteries run far longer than they do now."
Murray, meanwhile, sees potential in the high-capacity lithium polymer battery that keeps two-way radios and other law enforcement devices operating long after other batteries have run out. His and other companies are investigating other commercial applications, including mobile devices for warehouse and retail use. With a partner, it is also looking at wireless charging, where users won't have to touch the battery to charge it. Ultimately, he says, the biggest improvements for mobile device batteries are likely to come "not from any breakthroughs in cell technology but from better power management."
It's universally agreed that data management will be a hot area for development for some time to come. "Chargers will become data analysis tools for fleet management," Lichtenberg explains. The big question is how to integrate the wealth of data from advanced battery management systems with forklift fleet management systems. "Everyone has their own IP (intellectual property), and there are collaborations going on within the industry because data collection and analysis is so critical" to identifying opportunities to improve fleet performance and proactively identify problems before they happen, he observes.
Teeter-Balin agrees, saying that tighter integration of forklift tracking systems and battery information is a logical next step, and that battery management tools will become more valuable as part of total warehouse data management programs in the future.
Container traffic is finally back to typical levels at the port of Montreal, two months after dockworkers returned to work following a strike, port officials said Thursday.
Today that arbitration continues as the two sides work to forge a new contract. And port leaders with the Maritime Employers Association (MEA) are reminding workers represented by the Canadian Union of Public Employees (CUPE) that the CIRB decision “rules out any pressure tactics affecting operations until the next collective agreement expires.”
The Port of Montreal alone said it had to manage a backlog of about 13,350 twenty-foot equivalent units (TEUs) on the ground, as well as 28,000 feet of freight cars headed for export.
Port leaders this week said they had now completed that task. “Two months after operations fully resumed at the Port of Montreal, as directed by the Canada Industrial Relations Board, the Montreal Port Authority (MPA) is pleased to announce that all port activities are now completely back to normal. Both the impact of the labour dispute and the subsequent resumption of activities required concerted efforts on the part of all port partners to get things back to normal as quickly as possible, even over the holiday season,” the port said in a release.
The “2024 Year in Review” report lists the various transportation delays, freight volume restrictions, and infrastructure repair costs of a long string of events. Those disruptions include labor strikes at Canadian ports and postal sites, the U.S. East and Gulf coast port strike; hurricanes Helene, Francine, and Milton; the Francis Scott key Bridge collapse in Baltimore Harbor; the CrowdStrike cyber attack; and Red Sea missile attacks on passing cargo ships.
“While 2024 was characterized by frequent and overlapping disruptions that exposed many supply chain vulnerabilities, it was also a year of resilience,” the Project44 report said. “From labor strikes and natural disasters to geopolitical tensions, each event served as a critical learning opportunity, underscoring the necessity for robust contingency planning, effective labor relations, and durable infrastructure. As supply chains continue to evolve, the lessons learned this past year highlight the increased importance of proactive measures and collaborative efforts. These strategies are essential to fostering stability and adaptability in a world where unpredictability is becoming the norm.”
In addition to tallying the supply chain impact of those events, the report also made four broad predictions for trends in 2025 that may affect logistics operations. In Project44’s analysis, they include:
More technology and automation will be introduced into supply chains, particularly ports. This will help make operations more efficient but also increase the risk of cybersecurity attacks and service interruptions due to glitches and bugs. This could also add tensions among the labor pool and unions, who do not want jobs to be replaced with automation.
The new administration in the United States introduces a lot of uncertainty, with talks of major tariffs for numerous countries as well as talks of US freight getting preferential treatment through the Panama Canal. If these things do come to fruition, expect to see shifts in global trade patterns and sourcing.
Natural disasters will continue to become more frequent and more severe, as exhibited by the wildfires in Los Angeles and the winter storms throughout the southern states in the U.S. As a result, expect companies to invest more heavily in sustainability to mitigate climate change.
The peace treaty announced on Wednesday between Isael and Hamas in the Middle East could support increased freight volumes returning to the Suez Canal as political crisis in the area are resolved.
The French transportation visibility provider Shippeo today said it has raised $30 million in financial backing, saying the money will support its accelerated expansion across North America and APAC, while driving enhancements to its “Real-Time Transportation Visibility Platform” product.
The funding round was led by Woven Capital, Toyota’s growth fund, with participation from existing investors: Battery Ventures, Partech, NGP Capital, Bpifrance Digital Venture, LFX Venture Partners, Shift4Good and Yamaha Motor Ventures. With this round, Shippeo’s total funding exceeds $140 million.
Shippeo says it offers real-time shipment tracking across all transport modes, helping companies create sustainable, resilient supply chains. Its platform enables users to reduce logistics-related carbon emissions by making informed trade-offs between modes and carriers based on carbon footprint data.
"Global supply chains are facing unprecedented complexity, and real-time transport visibility is essential for building resilience” Prashant Bothra, Principal at Woven Capital, who is joining the Shippeo board, said in a release. “Shippeo’s platform empowers businesses to proactively address disruptions by transforming fragmented operations into streamlined, data-driven processes across all transport modes, offering precise tracking and predictive ETAs at scale—capabilities that would be resource-intensive to develop in-house. We are excited to support Shippeo’s journey to accelerate digitization while enhancing cost efficiency, planning accuracy, and customer experience across the supply chain.”
Donald Trump has been clear that he plans to hit the ground running after his inauguration on January 20, launching ambitious plans that could have significant repercussions for global supply chains.
As Mark Baxa, CSCMP president and CEO, says in the executive forward to the white paper, the incoming Trump Administration and a majority Republican congress are “poised to reshape trade policies, regulatory frameworks, and the very fabric of how we approach global commerce.”
The paper is written by import/export expert Thomas Cook, managing director for Blue Tiger International, a U.S.-based supply chain management consulting company that focuses on international trade. Cook is the former CEO of American River International in New York and Apex Global Logistics Supply Chain Operation in Los Angeles and has written 19 books on global trade.
In the paper, Cook, of course, takes a close look at tariff implications and new trade deals, emphasizing that Trump will seek revisions that will favor U.S. businesses and encourage manufacturing to return to the U.S. The paper, however, also looks beyond global trade to addresses topics such as Trump’s tougher stance on immigration and the possibility of mass deportations, greater support of Israel in the Middle East, proposals for increased energy production and mining, and intent to end the war in the Ukraine.
In general, Cook believes that many of the administration’s new policies will be beneficial to the overall economy. He does warn, however, that some policies will be disruptive and add risk and cost to global supply chains.
In light of those risks and possible disruptions, Cook’s paper offers 14 recommendations. Some of which include:
Create a team responsible for studying the changes Trump will introduce when he takes office;
Attend trade shows and make connections with vendors, suppliers, and service providers who can help you navigate those changes;
Consider becoming C-TPAT (Customs-Trade Partnership Against Terrorism) certified to help mitigate potential import/export issues;
Adopt a risk management mindset and shift from focusing on lowest cost to best value for your spend;
Increase collaboration with internal and external partners;
Expect warehousing costs to rise in the short term as companies look to bring in foreign-made goods ahead of tariffs;
Expect greater scrutiny from U.S. Customs and Border Patrol of origin statements for imports in recognition of attempts by some Chinese manufacturers to evade U.S. import policies;
Reduce dependency on China for sourcing; and
Consider manufacturing and/or sourcing in the United States.
Cook advises readers to expect a loosening up of regulations and a reduction in government under Trump. He warns that while some world leaders will look to work with Trump, others will take more of a defiant stance. As a result, companies should expect to see retaliatory tariffs and duties on exports.
Cook concludes by offering advice to the incoming administration, including being sensitive to the effect retaliatory tariffs can have on American exports, working on federal debt reduction, and considering promoting free trade zones. He also proposes an ambitious water works program through the Army Corps of Engineers.
ReposiTrak, a global food traceability network operator, will partner with Upshop, a provider of store operations technology for food retailers, to create an end-to-end grocery traceability solution that reaches from the supply chain to the retail store, the firms said today.
The partnership creates a data connection between suppliers and the retail store. It works by integrating Salt Lake City-based ReposiTrak’s network of thousands of suppliers and their traceability shipment data with Austin, Texas-based Upshop’s network of more than 450 retailers and their retail stores.
That accomplishment is important because it will allow food sector trading partners to meet the U.S. FDA’s Food Safety Modernization Act Section 204d (FSMA 204) requirements that they must create and store complete traceability records for certain foods.
And according to ReposiTrak and Upshop, the traceability solution may also unlock potential business benefits. It could do that by creating margin and growth opportunities in stores by connecting supply chain data with store data, thus allowing users to optimize inventory, labor, and customer experience management automation.
"Traceability requires data from the supply chain and – importantly – confirmation at the retail store that the proper and accurate lot code data from each shipment has been captured when the product is received. The missing piece for us has been the supply chain data. ReposiTrak is the leader in capturing and managing supply chain data, starting at the suppliers. Together, we can deliver a single, comprehensive traceability solution," Mark Hawthorne, chief innovation and strategy officer at Upshop, said in a release.
"Once the data is flowing the benefits are compounding. Traceability data can be used to improve food safety, reduce invoice discrepancies, and identify ways to reduce waste and improve efficiencies throughout the store,” Hawthorne said.
Under FSMA 204, retailers are required by law to track Key Data Elements (KDEs) to the store-level for every shipment containing high-risk food items from the Food Traceability List (FTL). ReposiTrak and Upshop say that major industry retailers have made public commitments to traceability, announcing programs that require more traceability data for all food product on a faster timeline. The efforts of those retailers have activated the industry, motivating others to institute traceability programs now, ahead of the FDA’s enforcement deadline of January 20, 2026.