Batteries and chargers: something new under the sun
Two product categories that haven't changed much in the last 10 years—batteries and chargers for lift trucks and mobile devices—are undergoing a transformation.
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
If you've been operating under the assumption that the batteries and chargers you will use to power your forklifts and mobile devices a few years from now will be pretty much the same as the ones you've used for the past decade, you'd better sit down. We have news for you: This normally staid product category is on the verge of a revolution.
Advances in technology are fostering a wave of innovation in chargers and batteries—both very large ones, such as those for electric lift trucks, and very small ones for mobile devices like bar-code scanners, RFID readers, and printers. There's a lot going on, and we can't cover every recent development in this short article. (We've left out lithium-ion batteries for forklifts, which we covered in a separate article last year, for example.) But we can offer a few examples of the capabilities that are turning old-school equipment into 21st century tools. Here are five that bear watching:
1. Alerting users to problems as they happen. Electronic monitors and diagnostics for forklift battery utilization, power usage and output, and water levels have been around for a few years. Earlier generations required technicians to connect the batteries to a computer or testing device during troubleshooting or scheduled maintenance. Now, thanks to wireless communication, it's possible to transmit data in real time, alerting fleet managers when a problem first develops, not days or weeks after the fact.
A number of companies offer wireless battery monitoring systems that continuously collect, log, and report information while the battery is operating, producing readouts and alerts in real time.
These wireless battery monitoring systems continuously collect, log, and report information like temperature, water levels, charge intervals, and state of charge while the battery is operating. If a problem develops, they send an alert via e-mail or text message. This information is also delivered to an online pOréal or cloud-based software platform, where it can be analyzed and managed, allowing fleets to compare batteries' performance by truck, individual site, or a network of sites.
Some examples on the forklift OEM side are Raymond's iBattery, Crown Equipment Corp.'s Battery Health Monitor, Hyster Co.'s Hyster Battery Tracker, and Yale Materials Handling Corp.'s Yale Battery Vision products. Examples from independent providers include Advanced Charging Technologies' (ACT) Quantum and Power Designers USA's PowerCharge.NET comprehensive solutions, both of which monitor, report on, and manage batteries as well as chargers. (Many other products on the market monitor battery performance remotely; most track a more limited range of functions.)
2. Monitoring beyond the battery itself. Traditionally, exterior parts and components that aren't part of the forklift battery itself have been monitored by visual checks and physical tests during scheduled maintenance. Now, we're starting to see ongoing monitoring and remote data collection for such items.
One example is charge cables, which can suffer wear and tear while the lift truck is in use and from being plugged and unplugged repeatedly. Waiting for scheduled maintenance can be risky. "If they are not properly maintained, cables can suffer damage and even melt, which can affect the trucks and the goods, and most importantly, the safety of the driver," notes Jonah Teeter-Balin, director of product marketing for AeroVironment. To prevent such incidents, AeroVironment developed Connect RX for its PosiCharge ProCore chargers. This technology monitors cable connectors during charging sessions, shutting down the charge session and alerting the user if abnormalities are detected.
3. Becoming easier to use, control, and maintain. Two growing challenges for warehouses and DCs—the need to minimize downtime in a 24-7 operation and the difficulty of hiring and retaining qualified equipment technicians—are prompting manufacturers of forklift battery chargers to take some creative steps to address those concerns. Here are three examples:
AeroVironment's mobile app for its PosiCharge ProCore battery charger is one example of the trend toward making easier, more intuitive controls that are similar to consumer electronics.
A notable trend at the Modex 2016 trade show earlier this year was the shift toward simpler, more visually intuitive controls for material handling equipment. The aim is to make it easier for users to read, understand, program, and maintain equipment, requiring less specialized knowledge and simplifying the procedures. One example is AeroVironment's mobile app for its PosiCharge ProCore series of chargers. Through the app—the first for forklift chargers, the company says—users can set up new units, configure and update settings, view real-time information, and download data from the charger using a smartphone running iOS or Android. The intuitively designed app also has the ability to save and repeat settings, which eliminates the need to repeat steps and screens to set up or reprogram multiple chargers.
Modular designs provide a high degree of flexibility while essentially eliminating downtime. This approach offers so many advantages, in fact, that it's fast becoming the norm. One example is Power Designers USA's aptly named Revolution series of high-frequency chargers. The chargers' multiple "plug and play" power modules let users scale the number of modules up or down to match the needed power output. And because each module operates independently, if one stops working, the others continue charging, so charging is not interrupted. According to Power Designers, which says it was the first to develop modular chargers, replacing a module is a simple matter of turning a few screws, re-energizing the charger, and entering a few keystrokes on a control panel. Other manufacturers that now offer modular chargers include Hawker Powersource, Advanced Charging Technologies, Eagle Eye Power Solutions, and Enatel/DC Power Technologies, to name a few.
Advancements in technology are also making it possible to use one charger for batteries of multiple types and sizes. Traditionally, operations with different types of batteries not only had to match them with the right kind of charger but also had to manually program the charger correctly—something that didn't always happen, notes Jim Lichtenberg, business manager for Ametek Prestolite Power. Now, though, some chargers are able to recognizedifferent types of batteries and automatically adjust the charge for the battery at hand. Prestolite Power, for example, developed its Auto Range Curve software for its Eclipse II charger, which allows the charger to identify the number of cells as well as accept a minimum and a maximum amp-hour capacity for the cell size. With the software, the charger evaluates the battery's response to the charge current and properly adjusts the curve throughout the charge cycle.
Other examples of chargers that can automatically recognize all types of lead-acid and lithium-ion batteries and charge the batteries to the proper setting include Power Designers' Revolution charger paired with its PowerTrac battery monitor and AeroVironment's ProCore chargers.
4. Revealing information that was not previously available. For users of the very small batteries in mobile devices like scanners and RFID (radio-frequency identification) readers, it's always been tough to quickly and accurately tell a "good" battery from a "bad" one. For instance, users may assume that a battery that charges quickly is a good one, but it could be charging quickly because it's older and has less capacity. As a result, they might have to change batteries during a shift or, because they think the problem is with the device itself, they might unnecessarily send the scanner or reader out for repair, says Larry Murray, CEO of Global Technology Systems Inc. (GTS), a provider of batteries and management services for mobile devices.
To address those problems, GTS developed a testing system it says can tell operators in less than five seconds whether a battery has sufficient juice for the job. The tester, about the size of a deck of cards, has two probes that touch the battery's terminal contacts. It puts a small charge into the battery, which rebounds to the tester; that information then downloads via Bluetooth to a smartphone app. A proprietary algorithm analyzes the results to determine the battery's state of health, and the app issues both visual and audible signals indicating whether the battery is "OK" or "not OK" to use. The data are also transmitted to GTS's cloud-based software for compilation and further analysis. According to Murray, this kind of aggregate data has never been available for mobile device batteries before. Once the company's database has grown sufficiently, GTS says, users will be able to compare performance among their own sites as well as against peers.
5. Getting more performance from the same size mobile device battery. When it comes to batteries for mobile devices, their small size can be both a blessing and a curse. On the one hand, they make the devices lighter and ergonomically comfortable to use. On the other hand, their size limits the amount of power they can provide over the course of a shift. Because many of today's devices incorporate more features and capabilities than their predecessors did, they tend to draw more power. For the most part, though, the size of the batteries and battery compartments haven't changed, so power may run out before the end of a shift, says Ken Murphy, COO of Impact Power Technologies, a supplier of batteries for mobile devices.
The goal, then, is to get more power and longer run times from the same size battery. Two factors will determine whether that's feasible, according to Murphy. The first is the battery's cHemiätry, which differs for each manufacturer. The second is the battery management system, which regulates the amount of power that goes into a battery while charging and the amount that comes out when in use. Find the perfect balance between input and output, and the battery will last much longer, Murphy explains. He and President Curt Quinter say their company has done just that, getting 20 to 25 percent more capacity into the same size battery pack and allowing the company to guarantee that its batteries will run a full shift. The combination of Japanese-made lithium-ion cells, which have the fewest impurities, together with a proprietary battery management system that prevents batteries from being overcharged or overdischarged makes that possible, they say.
WHAT'S NEXT?
The experts we consulted for this article foresee more innovations to come. Several mentioned Tesla's research and development efforts as potentially having an impact on industrial motive power. In fact, we're already seeing a migration of concepts from consumer electric vehicles to the industrial side. That's where AeroVironment, which has product lines in both areas, got the idea for its ProCore mobile app, for example.
Advancements could also come from unexpected quarters. Quinter notes that batteries built to operate in space run for years, and that researchers are working on a battery that's activated by salt water and could keep ocean buoys transmitting data for up to five years. "You don't know what scientists will stumble across or what combinations of exotic metals might prove useful in the future," he says. "Sooner or later, somebody's going to hit on one that will make lithium-ion batteries run far longer than they do now."
Murray, meanwhile, sees potential in the high-capacity lithium polymer battery that keeps two-way radios and other law enforcement devices operating long after other batteries have run out. His and other companies are investigating other commercial applications, including mobile devices for warehouse and retail use. With a partner, it is also looking at wireless charging, where users won't have to touch the battery to charge it. Ultimately, he says, the biggest improvements for mobile device batteries are likely to come "not from any breakthroughs in cell technology but from better power management."
It's universally agreed that data management will be a hot area for development for some time to come. "Chargers will become data analysis tools for fleet management," Lichtenberg explains. The big question is how to integrate the wealth of data from advanced battery management systems with forklift fleet management systems. "Everyone has their own IP (intellectual property), and there are collaborations going on within the industry because data collection and analysis is so critical" to identifying opportunities to improve fleet performance and proactively identify problems before they happen, he observes.
Teeter-Balin agrees, saying that tighter integration of forklift tracking systems and battery information is a logical next step, and that battery management tools will become more valuable as part of total warehouse data management programs in the future.
A move by federal regulators to reinforce requirements for broker transparency in freight transactions is stirring debate among transportation groups, after the Federal Motor Carrier Safety Administration (FMCSA) published a “notice of proposed rulemaking” this week.
According to FMCSA, its draft rule would strive to make broker transparency more common, requiring greater sharing of the material information necessary for transportation industry parties to make informed business decisions and to support the efficient resolution of disputes.
The proposed rule titled “Transparency in Property Broker Transactions” would address what FMCSA calls the lack of access to information among shippers and motor carriers that can impact the fairness and efficiency of the transportation system, and would reframe broker transparency as a regulatory duty imposed on brokers, with the goal of deterring non-compliance. Specifically, the move would require brokers to keep electronic records, and require brokers to provide transaction records to motor carriers and shippers upon request and within 48 hours of that request.
Under federal regulatory processes, public comments on the move are due by January 21, 2025. However, transportation groups are not waiting on the sidelines to voice their opinions.
According to the Transportation Intermediaries Association (TIA), an industry group representing the third-party logistics (3PL) industry, the potential rule is “misguided overreach” that fails to address the more pressing issue of freight fraud. In TIA’s view, broker transparency regulation is “obsolete and un-American,” and has no place in today’s “highly transparent” marketplace. “This proposal represents a misguided focus on outdated and unnecessary regulations rather than tackling issues that genuinely threaten the safety and efficiency of our nation’s supply chains,” TIA said.
But trucker trade group the Owner-Operator Independent Drivers Association (OOIDA) welcomed the proposed rule, which it said would ensure that brokers finally play by the rules. “We appreciate that FMCSA incorporated input from our petition, including a requirement to make records available electronically and emphasizing that brokers have a duty to comply with regulations. As FMCSA noted, broker transparency is necessary for a fair, efficient transportation system, and is especially important to help carriers defend themselves against alleged claims on a shipment,” OOIDA President Todd Spencer said in a statement.
Additional pushback came from the Small Business in Transportation Coalition (SBTC), a network of transportation professionals in small business, which said the potential rule didn’t go far enough. “This is too little too late and is disappointing. It preserves the status quo, which caters to Big Broker & TIA. There is no question now that FMCSA has been captured by Big Broker. Truckers and carriers must now come out in droves and file comments in full force against this starting tomorrow,” SBTC executive director James Lamb said in a LinkedIn post.
The “series B” funding round was financed by an unnamed “strategic customer” as well as Teradyne Robotics Ventures, Toyota Ventures, Ranpak, Third Kind Venture Capital, One Madison Group, Hyperplane, Catapult Ventures, and others.
The fresh backing comes as Massachusetts-based Pickle reported a spate of third quarter orders, saying that six customers placed orders for over 30 production robots to deploy in the first half of 2025. The new orders include pilot conversions, existing customer expansions, and new customer adoption.
“Pickle is hitting its strides delivering innovation, development, commercial traction, and customer satisfaction. The company is building groundbreaking technology while executing on essential recurring parts of a successful business like field service and manufacturing management,” Omar Asali, Pickle board member and CEO of investor Ranpak, said in a release.
According to Pickle, its truck-unloading robot applies “Physical AI” technology to one of the most labor-intensive, physically demanding, and highest turnover work areas in logistics operations. The platform combines a powerful vision system with generative AI foundation models trained on millions of data points from real logistics and warehouse operations that enable Pickle’s robotic hardware platform to perform physical work at human-scale or better, the company says.
Bloomington, Indiana-based FTR said its Trucking Conditions Index declined in September to -2.47 from -1.39 in August as weakness in the principal freight dynamics – freight rates, utilization, and volume – offset lower fuel costs and slightly less unfavorable financing costs.
Those negative numbers are nothing new—the TCI has been positive only twice – in May and June of this year – since April 2022, but the group’s current forecast still envisions consistently positive readings through at least a two-year forecast horizon.
“Aside from a near-term boost mostly related to falling diesel prices, we have not changed our Trucking Conditions Index forecast significantly in the wake of the election,” Avery Vise, FTR’s vice president of trucking, said in a release. “The outlook continues to be more favorable for carriers than what they have experienced for well over two years. Our analysis indicates gradual but steadily rising capacity utilization leading to stronger freight rates in 2025.”
But FTR said its forecast remains unchanged. “Just like everyone else, we’ll be watching closely to see exactly what trade and other economic policies are implemented and over what time frame. Some freight disruptions are likely due to tariffs and other factors, but it is not yet clear that those actions will do more than shift the timing of activity,” Vise said.
The TCI tracks the changes representing five major conditions in the U.S. truck market: freight volumes, freight rates, fleet capacity, fuel prices, and financing costs. Combined into a single index indicating the industry’s overall health, a positive score represents good, optimistic conditions while a negative score shows the inverse.
Specifically, the new global average robot density has reached a record 162 units per 10,000 employees in 2023, which is more than double the mark of 74 units measured seven years ago.
Broken into geographical regions, the European Union has a robot density of 219 units per 10,000 employees, an increase of 5.2%, with Germany, Sweden, Denmark and Slovenia in the global top ten. Next, North America’s robot density is 197 units per 10,000 employees – up 4.2%. And Asia has a robot density of 182 units per 10,000 persons employed in manufacturing - an increase of 7.6%. The economies of Korea, Singapore, mainland China and Japan are among the top ten most automated countries.
Broken into individual countries, the U.S. ranked in 10th place in 2023, with a robot density of 295 units. Higher up on the list, the top five are:
The Republic of Korea, with 1,012 robot units, showing a 5% increase on average each year since 2018 thanks to its strong electronics and automotive industries.
Singapore had 770 robot units, in part because it is a small country with a very low number of employees in the manufacturing industry, so it can reach a high robot density with a relatively small operational stock.
China took third place in 2023, surpassing Germany and Japan with a mark of 470 robot units as the nation has managed to double its robot density within four years.
Germany ranks fourth with 429 robot units for a 5% CAGR since 2018.
Japan is in fifth place with 419 robot units, showing growth of 7% on average each year from 2018 to 2023.
Progress in generative AI (GenAI) is poised to impact business procurement processes through advancements in three areas—agentic reasoning, multimodality, and AI agents—according to Gartner Inc.
Those functions will redefine how procurement operates and significantly impact the agendas of chief procurement officers (CPOs). And 72% of procurement leaders are already prioritizing the integration of GenAI into their strategies, thus highlighting the recognition of its potential to drive significant improvements in efficiency and effectiveness, Gartner found in a survey conducted in July, 2024, with 258 global respondents.
Gartner defined the new functions as follows:
Agentic reasoning in GenAI allows for advanced decision-making processes that mimic human-like cognition. This capability will enable procurement functions to leverage GenAI to analyze complex scenarios and make informed decisions with greater accuracy and speed.
Multimodality refers to the ability of GenAI to process and integrate multiple forms of data, such as text, images, and audio. This will make GenAI more intuitively consumable to users and enhance procurement's ability to gather and analyze diverse information sources, leading to more comprehensive insights and better-informed strategies.
AI agents are autonomous systems that can perform tasks and make decisions on behalf of human operators. In procurement, these agents will automate procurement tasks and activities, freeing up human resources to focus on strategic initiatives, complex problem-solving and edge cases.
As CPOs look to maximize the value of GenAI in procurement, the study recommended three starting points: double down on data governance, develop and incorporate privacy standards into contracts, and increase procurement thresholds.
“These advancements will usher procurement into an era where the distance between ideas, insights, and actions will shorten rapidly,” Ryan Polk, senior director analyst in Gartner’s Supply Chain practice, said in a release. "Procurement leaders who build their foundation now through a focus on data quality, privacy and risk management have the potential to reap new levels of productivity and strategic value from the technology."