Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
Try as they might, they couldn't figure it out. A distribution center in Florida was experiencing an unacceptably high rate of forklift-related product damage. The lift truck fleet had installed iWarehouse, a telematics solution from The Raymond Corp., and the fleet manager had asked the forklift maker for help in using the system to learn why there was so much damage. But the traditional observations—the time of day, where impacts were happening, and who was driving—didn't turn up any obvious reasons for the impacts. Puzzled, the truck manufacturer and its customer decided to look beyond the forklift operation for possible causes, recalls John Rosenberger, product manager for iWarehouse Gateway, the system's reporting user interface. Among the things they looked at was the general environment inside the building.
Where the DC is located in Florida, high humidity levels are common, so the facility monitors humidity levels and has dehumidifiers in place. That gave the team an idea: compare the relative humidity readings with the forklift impact records in the telematics system.
"Sure enough, they aligned, and we found the root cause of the impacts," Rosenberger says. On days when thunderstorms were rolling through, the humidity rose so quickly the dehumidifiers couldn't keep up. The concrete floors became wet, and for just an hour or two, the floor would be slippery. During those times, the drivers—who are paid on piecework, which motivated them to drive fast—were prone to sliding, which led to impacts and product damage.
With that information in hand, Raymond and its customer found a way to prevent sliding accidents. Now, when relative humidity exceeds a certain threshold, the DC manager uses the iControl function in iWarehouse to reduce the maximum speed of the trucks and then to raise it after the danger has passed. For lift trucks that do not have iControl, the system alerts drivers to slow down or speed up via a message on the iWarehouse monitor display on the truck. According to Rosenberger, accidents and product damage quickly declined, and the DC still meets its throughput goals despite the periodic speed reductions.
THE WMS/LMS CONNECTION
"The Case of the Slippery Floors" is a good example of how a "big data" approach can be applied to lift truck fleet management. "Big data" refers to the analysis of data from multiple sources, often unrelated and unstructured, to find hidden correlations and unseen cause-and-effect relationships. While a true big data analysis involves sifting through huge amounts of information, the big data concept can also be applied to analyses of much smaller amounts of information. On a small scale, this is more likely to involve a comparison of two data sets, which can help companies to start down the path of using data analysis to solve problems. "This is not about gathering new data," explains Roger Tenney, senior vice president, client services, for I.D. Systems Inc., a provider of wireless vehicle management systems. "Big data is about new ways of combining, integrating, and analyzing existing information from disconnected or apparently divergent data sources."
This type of analysis requires help from technology. Although spreadsheets and basic databases are useful in collecting and sorting fleet operating and maintenance data, it can be a cumbersome, slow process to enter data from different sources, sort it, visually identify patterns, and then figure out the correlations. Fleet and battery management, maintenance tracking, and asset tracking software—not just those mentioned in this article but also the many other programs that are on the market—are designed to gather, compare, and analyze data from multiple sources. A big data analysis requires a certain degree of technological sophistication, so fleet managers shouldn't be reluctant to ask for help. The lift truck manufacturer, the software provider, and in some cases, an outside data management consultant or an in-house systems analyst can assist with identifying which data are relevant, determining how best to "harvest" it, and then conducting an analysis.
A big data analysis might look at information sources that are related but traditionally are examined independently. For example, lift truck, battery, and charger performance usually are reviewed separately. But a big data analysis that treats them as "a holistic system" will allow fleet managers to see patterns that would not be apparent otherwise, says Harold Vanasse, vice president of sales and marketing for Philadelphia Scientific, a provider of battery management technologies. Some of his customers match their battery usage and handling data with lift truck manufacturers' data collection and analysis systems, such as InfoLink from Crown Equipment and iWarehouse from Raymond, Vanasse says. "They may look at changes in run times and utilization of batteries with our system, then look at the fleet's performance. They can then match up the activity of a truck [powered by] a particular battery with that battery's performance" to find out whether one is affecting the other, he explains.
Or, like the humidity example above, it may involve analyzing data sources that appear to be unrelated. Another example: An analysis of a Raymond customer's maintenance and repair data showed that some trucks were suffering damage to drive wheels and tires, while others were not. A look at the damaged trucks' daily activities found that they all had been driving over a malfunctioning dock plate. The DC's managers were aware of the faulty plate and had planned to replace it when the next year's facility-maintenance budget was released. But because building maintenance and fleet maintenance had separate budgets, nobody knew until it was revealed by the analysis that driving over the dock plate was directly responsible for some $1,000 a month in truck repairs, Rosenberger says. Immediately replacing the dock plate would be more cost-effective than waiting for the following year's budget to kick in.
In that particular case, the customer was able to track down the problem because it assigned drivers and trucks to specific dock areas. But a company that does not follow that approach could use information from its warehouse management system (WMS) to see which jobs directed operators through a particular dock or other section of a warehouse, Rosenberger notes.
A WMS can be an invaluable source of information for this type of analysis. One of Philadelphia Scientific's customers, for instance, was experiencing a reduction in the number of picks per hour. Around the same time, managers noticed that drivers were changing batteries more frequently than would have been expected. Using its WMS, the company saw a correlation between the frequency of battery changes and reduction in hourly picks. The problem, it turned out, was that operators, who were paid by the piece, wanted to make the quickest possible change and get back out on the floor. As a result, some would grab the closest battery rather than ones that were fully charged and fully cooled down. The batteries did not last a full shift, and drivers lost time in the changing room. After getting rid of the older batteries and putting in a battery-tracking system, the DC achieved a 35-percent reduction in battery changes while order picks per hour quickly rose, Vanasse relates.
Tenney says some of I.D. Systems' customers have analyzed fleet telematics and maintenance data in concert with information from their labor management systems (LMS) and timekeeping modules like a payroll log to track down productivity-busters. One grocery distributor used that approach to identify the source of performance variances among lift truck drivers. "Big data can be used very effectively to identify who's falling behind, including looking at what are the four or five attributes that define an operator. Then you can break that down into what he or she is good or bad at," he says. The point is not to punish, but to "be able to look at productivity from all viewpoints and angles within how a job is done." That analysis allowed the customer to identify training program enhancements that helped operators become more effective. Before long, the grocery distributor increased throughput by 15 percent with the same operators and vehicles, according to Tenney.
PREVENTIVE ACTION
Big data analysis and correlation is not always about solving problems. It can also be an effective tool for improving current practices. For example, previously established time standards may suggest that a certain number of order pickers are needed for a particular shift. But correlating WMS data (what needed to be accomplished) with lift truck telematics (how long it actually took) over time may show that the standards in a labor management system (LMS) are no longer accurate, Tenney says.
Integrating data from different data sources can be useful for predicting the future, too. One I.D. Systems customer, a large consumer products supplier to a Fortune 10 company, worked backward from significant repair events to identify patterns in the types of activities that occurred prior to those repairs. "It allows you to say, for example, that when these four things happen, three months later, this problem happens," Tenney explains. Because the customer was able to identify the common thread among unrelated events, it is now able take action before a major failure occurs.
Applying big data analysis to lift truck fleet management is neither easy nor simple. It also takes time, since any analysis must consider large quantities of data over a lengthy period to find and validate patterns. But as the examples in this article show, the payoff in terms of problem solving or prevention could make it well worth the effort.
A move by federal regulators to reinforce requirements for broker transparency in freight transactions is stirring debate among transportation groups, after the Federal Motor Carrier Safety Administration (FMCSA) published a “notice of proposed rulemaking” this week.
According to FMCSA, its draft rule would strive to make broker transparency more common, requiring greater sharing of the material information necessary for transportation industry parties to make informed business decisions and to support the efficient resolution of disputes.
The proposed rule titled “Transparency in Property Broker Transactions” would address what FMCSA calls the lack of access to information among shippers and motor carriers that can impact the fairness and efficiency of the transportation system, and would reframe broker transparency as a regulatory duty imposed on brokers, with the goal of deterring non-compliance. Specifically, the move would require brokers to keep electronic records, and require brokers to provide transaction records to motor carriers and shippers upon request and within 48 hours of that request.
Under federal regulatory processes, public comments on the move are due by January 21, 2025. However, transportation groups are not waiting on the sidelines to voice their opinions.
According to the Transportation Intermediaries Association (TIA), an industry group representing the third-party logistics (3PL) industry, the potential rule is “misguided overreach” that fails to address the more pressing issue of freight fraud. In TIA’s view, broker transparency regulation is “obsolete and un-American,” and has no place in today’s “highly transparent” marketplace. “This proposal represents a misguided focus on outdated and unnecessary regulations rather than tackling issues that genuinely threaten the safety and efficiency of our nation’s supply chains,” TIA said.
But trucker trade group the Owner-Operator Independent Drivers Association (OOIDA) welcomed the proposed rule, which it said would ensure that brokers finally play by the rules. “We appreciate that FMCSA incorporated input from our petition, including a requirement to make records available electronically and emphasizing that brokers have a duty to comply with regulations. As FMCSA noted, broker transparency is necessary for a fair, efficient transportation system, and is especially important to help carriers defend themselves against alleged claims on a shipment,” OOIDA President Todd Spencer said in a statement.
Additional pushback came from the Small Business in Transportation Coalition (SBTC), a network of transportation professionals in small business, which said the potential rule didn’t go far enough. “This is too little too late and is disappointing. It preserves the status quo, which caters to Big Broker & TIA. There is no question now that FMCSA has been captured by Big Broker. Truckers and carriers must now come out in droves and file comments in full force against this starting tomorrow,” SBTC executive director James Lamb said in a LinkedIn post.
The “series B” funding round was financed by an unnamed “strategic customer” as well as Teradyne Robotics Ventures, Toyota Ventures, Ranpak, Third Kind Venture Capital, One Madison Group, Hyperplane, Catapult Ventures, and others.
The fresh backing comes as Massachusetts-based Pickle reported a spate of third quarter orders, saying that six customers placed orders for over 30 production robots to deploy in the first half of 2025. The new orders include pilot conversions, existing customer expansions, and new customer adoption.
“Pickle is hitting its strides delivering innovation, development, commercial traction, and customer satisfaction. The company is building groundbreaking technology while executing on essential recurring parts of a successful business like field service and manufacturing management,” Omar Asali, Pickle board member and CEO of investor Ranpak, said in a release.
According to Pickle, its truck-unloading robot applies “Physical AI” technology to one of the most labor-intensive, physically demanding, and highest turnover work areas in logistics operations. The platform combines a powerful vision system with generative AI foundation models trained on millions of data points from real logistics and warehouse operations that enable Pickle’s robotic hardware platform to perform physical work at human-scale or better, the company says.
Bloomington, Indiana-based FTR said its Trucking Conditions Index declined in September to -2.47 from -1.39 in August as weakness in the principal freight dynamics – freight rates, utilization, and volume – offset lower fuel costs and slightly less unfavorable financing costs.
Those negative numbers are nothing new—the TCI has been positive only twice – in May and June of this year – since April 2022, but the group’s current forecast still envisions consistently positive readings through at least a two-year forecast horizon.
“Aside from a near-term boost mostly related to falling diesel prices, we have not changed our Trucking Conditions Index forecast significantly in the wake of the election,” Avery Vise, FTR’s vice president of trucking, said in a release. “The outlook continues to be more favorable for carriers than what they have experienced for well over two years. Our analysis indicates gradual but steadily rising capacity utilization leading to stronger freight rates in 2025.”
But FTR said its forecast remains unchanged. “Just like everyone else, we’ll be watching closely to see exactly what trade and other economic policies are implemented and over what time frame. Some freight disruptions are likely due to tariffs and other factors, but it is not yet clear that those actions will do more than shift the timing of activity,” Vise said.
The TCI tracks the changes representing five major conditions in the U.S. truck market: freight volumes, freight rates, fleet capacity, fuel prices, and financing costs. Combined into a single index indicating the industry’s overall health, a positive score represents good, optimistic conditions while a negative score shows the inverse.
Specifically, the new global average robot density has reached a record 162 units per 10,000 employees in 2023, which is more than double the mark of 74 units measured seven years ago.
Broken into geographical regions, the European Union has a robot density of 219 units per 10,000 employees, an increase of 5.2%, with Germany, Sweden, Denmark and Slovenia in the global top ten. Next, North America’s robot density is 197 units per 10,000 employees – up 4.2%. And Asia has a robot density of 182 units per 10,000 persons employed in manufacturing - an increase of 7.6%. The economies of Korea, Singapore, mainland China and Japan are among the top ten most automated countries.
Broken into individual countries, the U.S. ranked in 10th place in 2023, with a robot density of 295 units. Higher up on the list, the top five are:
The Republic of Korea, with 1,012 robot units, showing a 5% increase on average each year since 2018 thanks to its strong electronics and automotive industries.
Singapore had 770 robot units, in part because it is a small country with a very low number of employees in the manufacturing industry, so it can reach a high robot density with a relatively small operational stock.
China took third place in 2023, surpassing Germany and Japan with a mark of 470 robot units as the nation has managed to double its robot density within four years.
Germany ranks fourth with 429 robot units for a 5% CAGR since 2018.
Japan is in fifth place with 419 robot units, showing growth of 7% on average each year from 2018 to 2023.
Progress in generative AI (GenAI) is poised to impact business procurement processes through advancements in three areas—agentic reasoning, multimodality, and AI agents—according to Gartner Inc.
Those functions will redefine how procurement operates and significantly impact the agendas of chief procurement officers (CPOs). And 72% of procurement leaders are already prioritizing the integration of GenAI into their strategies, thus highlighting the recognition of its potential to drive significant improvements in efficiency and effectiveness, Gartner found in a survey conducted in July, 2024, with 258 global respondents.
Gartner defined the new functions as follows:
Agentic reasoning in GenAI allows for advanced decision-making processes that mimic human-like cognition. This capability will enable procurement functions to leverage GenAI to analyze complex scenarios and make informed decisions with greater accuracy and speed.
Multimodality refers to the ability of GenAI to process and integrate multiple forms of data, such as text, images, and audio. This will make GenAI more intuitively consumable to users and enhance procurement's ability to gather and analyze diverse information sources, leading to more comprehensive insights and better-informed strategies.
AI agents are autonomous systems that can perform tasks and make decisions on behalf of human operators. In procurement, these agents will automate procurement tasks and activities, freeing up human resources to focus on strategic initiatives, complex problem-solving and edge cases.
As CPOs look to maximize the value of GenAI in procurement, the study recommended three starting points: double down on data governance, develop and incorporate privacy standards into contracts, and increase procurement thresholds.
“These advancements will usher procurement into an era where the distance between ideas, insights, and actions will shorten rapidly,” Ryan Polk, senior director analyst in Gartner’s Supply Chain practice, said in a release. "Procurement leaders who build their foundation now through a focus on data quality, privacy and risk management have the potential to reap new levels of productivity and strategic value from the technology."