Coming soon to a fleet near you: ultra-clean lifting machines
The EPA's stringent Tier 4 final emissions restrictions will apply to all diesel-powered lift trucks by the end of next year. How will the rules affect your fleet?
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
For those of us of a certain age, the word "diesel" evokes images of smelly, soot-spewing vehicles clogging highways and crawling around construction sites. Future generations, though, are unlikely to have those same associations. Thanks to stringent emissions control regulations issued by the U.S. Environmental Protection Agency (EPA), it won't be long before the exhaust from diesel engines is clean and clear.
Many people are familiar with those regulations as they apply to over-the-road trucks. But they also apply to diesel-powered "nonroad" vehicles, including the heavy-duty lift trucks typically used outdoors. The first level of emissions restrictions for diesel-powered lift trucks—designated Tier 1—went into effect in 1997. Over the next decade, Tier 2 and Tier 3 as well as Tier 4 interim rules were introduced.
But even stricter standards are looming. The next iteration, the Tier 4 final standards, mandate that harmful emissions from diesel-powered lift trucks be reduced by more than 90 percent compared with emissions levels before the regulations were first imposed.
Here's a look at what those rules require, how manufacturers are responding, and what they will mean for fleet operators.
RULES OF THE NONROAD
The main components of vehicle emissions are particulate matter (PM), nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO). Of these, only PM (soot, or "black smoke") and NOx are currently regulated by the EPA, according to J.B. Mayes, manager, counterbalanced product management for the Hyster Co.
Tier 4 interim regulations require that diesel engine manufacturers reduce PM exhaust emissions by 96 percent and NOx emissions by 76 percent compared with the Tier 1 standards, Mayes says. The Tier 4 final regulations reduce NOx emissions by 94 percent compared with the Tier 1 standards.
That last mandate, as they say, is a doozy: According to the lift truck manufacturers we spoke to for this article, moving from Tier 4 interim to Tier 4 final compliance will be difficult and expensive. "The EPA's objective is that whatever we shoot out of the exhaust should be cleaner than what we take in," says Tim Webb, manager, product development for Hyundai Construction Equipment Americas Inc. "Everybody can get to that, but the problem will be the components and the cost for modification of the diesel engine."
Compliance deadlines are keyed to engine output in kilowatts (also expressed as horsepower). For lift trucks rated up to 75 hp, the Tier 4 final standards went into effect Jan. 1, 2013. The deadline for engines rated between 174 and 750 hp is Jan. 1, 2014, and for those between 75 and 173 hp, the deadline is Jan. 1, 2015. Only engines manufactured on or after those dates are affected.
DESIGN CHALLENGES
For lift truck manufacturers, the challenge is to redesign their products to comply with the regulations but without compromising fuel efficiency, performance, or durability.
Most of the lift truck makers are partnering with engine manufacturers such as Cummins, Perkins, Kubota, and Deutz. (A notable exception is Toyota, which is producing its own Tier 4 final engine.) The engine manufacturers are using a variety of technologies to meet emissions requirements. The most common include:
Selective catalytic reduction (SCR) systems, which break down NOx into nitrogen and oxygen by mixing a reagent (called diesel exhaust fluid, or DEF) into the exhaust gas flow in a catalytic converter.
Exhaust gas recirculation (EGR), which dilutes the oxygen in the combustion chamber, lowering the combustion peak temperature and reducing the formation of NOx. The lower temperature increases particulate matter, which must be filtered out.
Diesel particulate filters (DPF), which trap particulate matter from the exhaust and burn it off to prevent soot from being released into the air.
Diesel oxidation catalysts (DOC), which convert carbon monoxide and hydrocarbons to water vapor and carbon dioxide.
Turbochargers, which help small, lower-emission engines generate more horsepower.
Each lift truck manufacturer must decide which combination of technologies will work best with its models and the applications for which they were designed. Hyundai, for example, will use diesel particulate filters in its 1.5- to 3.3-ton trucks and a diesel oxidation catalyst/selective catalytic reduction combination for larger trucks. Mitsubishi Caterpillar Forklift America Inc. (MCFA) chose diesel particulate filters for its Cat lift trucks and Mitsubishi forklift trucks lines. For its largest trucks, Hyster will use exhaust gas recirculation with a diesel particulate filter. Toyota's 8-Series trucks feature a new electronic common-rail fuel injection system that works with an intercooled turbocharger and a diesel oxidation catalyst. And Crown Equipment's Hamech V811 Series trucks are equipped with a diesel oxidation catalyst system. (See sidebar for a list of some of the Tier 4 models that are now available or will be shortly.)
The regulations have created some design challenges for lift truck manufacturers, says Jason Provancher, director of IC (internal combustion) product development and engineering at Crown Equipment Corp., which makes diesel-powered lift trucks under its Hamech brand. Components like the canister-shaped diesel particulate filters and the containers required to hold and burn oxidation catalysts take up space inside a truck, and it can be difficult to make room for them in a small lift truck, he notes. Manufacturers may also have to redesign the inner workings and exterior cowlings and panels to accommodate changes in the size and positioning of exhaust pipes, hoses, cables, and other components, says Lucas Dumdie, a product line manager at MCFA.
Another concern is the effect of overheating on the combustion process and the changes in emissions levels this can bring. Toyota, for one, has introduced an improved cooling system with the ability to reduce power usage automatically to help prevent overheating and maintain the proper emissions levels, according to Mark Faiman, a product manager for Toyota Material Handling, U.S.A., Inc. (TMHU).
Typically, operators must stop the truck and wait while accumulated particulates burn off. That's a productivity-buster, says Dumdie. So some manufacturers have found ways to carry out that process while the truck is running, without overheating. The Perkins-built engines in Mitsubishi's and Cat's Tier 4 final trucks, for example, heat up the DPF and automatically burn off soot while the vehicle is in operation.
Diesel lift trucks are designed for heavy-duty applications, so manufacturers that opt for smaller engines (which use less fuel and therefore, produce lower emissions) can't compromise power or lifting capacity. Toyota addressed that by incorporating a new electronic common-rail fuel injection system and an intercooled turbocharger into its fuel-sipping four-cylinder engine. Thanks to these and other design changes, the new model provides greater torque and as much horsepower as the previous inline six-cylinder engine, says Cesar Jimenez, TMHU's national product planning manager.
Fuel and lubricating oil are another consideration with Tier 4-compliant engines. Because sulfur can severely damage catalytic converters, low-emissions engines require ultra-low-sulfur diesel (ULSD) fuel, Provancher says. Although ULSD is in wide use, it may not be readily available everywhere lift truck fleets operate, he observes.
As for engine oil, because the emissions control systems generate more heat and the ash residue left when lube oil burns off during combustion can foul particulate filters, CJ-4 lubricant is recommended for engines using DPF and EGR systems, says Webb. "CJ-4 is more resistant to heat and produces less ash," he explains, which in most cases prolongs the interval between cleanings.
BUYERS BE AWARE
Initial purchase prices for Tier 4 final lift trucks will be higher than those for their Tier 3 predecessors. That's not surprising considering the additional costs engine and lift truck makers have incurred over the past decade, Provancher says. It's too early to say what Tier 4 final pricing could or should be over the long term, he continues, "but realistically, there's a good substitute with LPG (liquefied petroleum gas), and the market is only going to bear so much when it comes to purchase price." In the short term, there will be opportunities to buy less-expensive, lower-tier trucks, but he expects that supply will dry up in about a year.
Lift truck makers counter that the fuel savings from their Tier 4 final models compared with their previous models should offset the higher prices. Hyundai and Hyster, for instance, expect to boost average fuel efficiency by 10 percent and 15 percent, respectively, in the models they've scheduled for rollout. Mitsubishi and Cat, meanwhile, have both achieved a 22-percent improvement in fuel consumption. But Toyota may be the champion when it comes to fuel savings: The company is citing a 30-percent average reduction in fuel consumption for its 8-Series diesel trucks compared with the previous model.
Those improvements are due not only to hotter-burning, more efficient engines, but also to manufacturers' concerted efforts to cut fuel consumption—and thus, the total cost of ownership—through such innovations as regenerative braking, automatic engine shut-off, idle management, and on-demand hydraulic, cooling, and power steering. But there could be hidden costs. Engines that use selective catalytic reduction technology require a reagent called diesel exhaust fluid (DEF) that is approximately one-third urea and two-thirds water. "Trucks utilizing this technology require separate DEF tanks and regular fill-ups, creating additional costs for the user," Mayes notes.
Maintenance costs should not be much higher, according to the lift truck makers. Depending on the type of emissions equipment, infrequent or even no cleaning (in the case of DOC systems) will be required. Some diesel particulate filters, for instance, could go 4,000 hours or more before they need cleaning. But the Tier 4 final engines are highly electronic and thus "more complex than the diesel engines of yore," says MCFA's Dumdie. "As a result, they are a lot different to troubleshoot."
There's speculation that the advent of ultra-clean diesel engines could cause a shift in the lift truck market. For one thing, when pricing eventually comes down, there may not be as big a cost difference between electric and IC trucks as there is now, Webb suggests. "I think we'll see a more level playing field for the initial cost of a truck, battery, and charger versus the initial cost of a diesel truck."
The Tier 4 final engines, moreover, will be clean enough to use indoors in some areas, making them appropriate for at least a few applications where they've long been barred. Diesels could also become more attractive in California, where the California Air Resources Board (CARB) has imposed fleetwide emissions limits. Instead of having to replace older trucks with electrics or other power sources to keep a fleet's total emissions below the applicable limits, Toyota's Faiman says, buyers could purchase the powerful diesels they want and still be in compliance with the regulations.
That situation could soon spread to other states. The EPA has delayed approving CARB's diesel emissions rules for now, Faiman says, but if and when it does, other states with strict air-quality-attainment goals could follow California's lead and adopt fleet emissions averaging, too.
Where to learn more
There are many information resources available that explain the complex emissions control regulations for lift trucks. Here are some we found helpful:
The U.S. Environmental Protection Agency Emission Standards Reference Guide for compression-ignited nonroad vehicles provides an overview and includes links to the regulations for lift trucks.
The California Air Resources Board's "Diesel Programs and Activities" page includes everything you need to know about California's emissions restrictions.
Hyster's "2011 Tier 4 interim/Stage IIIB Emissions Standards" white paper explains and compares the different emissions control methods.
Tier 4 final lift trucks
Every manufacturer of diesel-powered lift trucks is working to develop models that comply with the Environmental Protection Agency's Tier 4 final emissions control regulations. Here's a quick look at some that are already on the market or will be very shortly.
Cat Lift Trucks says its DP40N1 and DP55N1 series of 8,000- to 12,000-pound capacity diesel pneumatic-tire lift trucks provide a 21.6-percent increase in fuel efficiency. The diesel particulate filter (DPF) will automatically regenerate, and the Perkins 854F engine will not require any ash service.
Crown Equipment'sHamech V811 Series pneumatic-tire forklift offers lifting capacities of up to 11,000 pounds for a variety of outdoor applications. Its Deutz TD 3.6-liter engine is equipped with a diesel oxidation catalyst (DOC) exhaust system that is maintenance-free and does not require periodic service.
The first of Hyundai's extensive line of Tier 4 final lift trucks will be available in the fourth quarter of 2013; the others will debut in 2014 and 2015. Trucks of up to 3.3 tons will use a diesel particulate filter (DPF) system. Larger vehicles will use a diesel oxidation catalyst (DOC) and selective catalytic reduction (SCR) system.
Hyster's H80-120FT Series of Tier 4 final lift trucks will feature an efficient Kubota 3.8-liter engine with exhaust gas recirculation and a diesel particulate filter. The pneumatic-tire forklifts will handle the toughest duty with lifting capacities ranging from 8,000 to 12,000 pounds.
Mitsubishi Forklift Trucks' FD40N1-FD55N1 series of 8,000- to 12,000-pound capacity diesel pneumatic-tire forklifts provide a 21.6-percent increase in fuel efficiency. The diesel particulate filter (DPF) on the Perkins 854F engine does not require any ash service and automatically regenerates during normal operation.
Toyota Industrial Equipment's 8-Series pneumatic-tire trucks handle loads of 8,000 to 17,500 pounds and feature a Toyota-built four-cylinder engine with a diesel oxidation catalyst, an electronic common-rail fuel-injection system, and an intercooled turbocharger. The 8-Series offers on average 30-percent lower fuel usage with as much horsepower and greater torque than its six-cylinder predecessor.
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."