If your handheld computers take a lot of abuse, maybe it's time for "rugged" devices. Here's a look at what makes them so tough, when they make economic sense, and why sometimes they're the only way to go.
Contributing Editor Toby Gooley is a writer and editor specializing in supply chain, logistics, and material handling, and a lecturer at MIT's Center for Transportation & Logistics. She previously was Senior Editor at DC VELOCITY and Editor of DCV's sister publication, CSCMP's Supply Chain Quarterly. Prior to joining AGiLE Business Media in 2007, she spent 20 years at Logistics Management magazine as Managing Editor and Senior Editor covering international trade and transportation. Prior to that she was an export traffic manager for 10 years. She holds a B.A. in Asian Studies from Cornell University.
Would you ever take a handheld computer into a swimming pool, drop it from the top of a climbing wall, run it over with a dirt bike, or use it as a hockey puck? Of course not! Yet some manufacturers of "rugged" handheld computers have produced videos showing their products being manhandled in those and other startling ways.
Those fanciful scenarios might seem extreme—after all, how many warehouse associates go swimming or play ice hockey during their shifts? But the tongue-in-cheek demonstrations make a valid point: Some warehousing and transportation environments are remarkably tough on handheld devices, and it pays to have equipment that can stand up to abuse.
The added durability comes at a price, of course, but in certain applications, rugged equipment might well prove the most cost-effective choice. Here's a look at what qualifies a device as "rugged" and the types of applications where these units make economic sense.
What makes a device rugged?
Rugged handheld computers are designed to work where they'll be exposed to potentially damaging conditions, such as bad weather, shocks and drops, high or low temperatures, and particulates like dust or sand. According to systems integrator Barcoding Inc. and handheld computer manufacturer Psion, five factors determine whether a handheld computer qualifies as a rugged device: the outer shell, the keypad, the display, the internal components, and the accessories.
The outer shell absorbs impact and prevents penetration by contaminants. Each shell carries an Ingress Protection (IP) Code rating that consists of two digits. The first refers to the level of protection against solid objects, and the second refers to protection against liquids. The lowest IP rating would be "11"—protected against a solid object greater than 50mm (about 2 inches) in diameter—a hand, for instance—and against falling drops of water, with limited ingress of water allowed. The highest rating would be "68"—no dust penetration, and protected against long periods of immersion in water under pressure. The highest-rated handheld computers for warehouse and transportation applications on the market today are rated IP 67—dust-tight and able to withstand immersion in water at depths of up to one meter (about 3.3 feet).
Keypads must be designed for use in all sorts of conditions. For example, the buttons have to be big enough that someone wearing gloves—think of people who work outdoors in winter or in refrigerated warehouses—can accurately enter data, says Mike Wills, vice president, North American sales, for Psion.
Because rugged handhelds have a long lifespan, keypads must remain readable for many years. Some common ways manufacturers increase wear resistance and prevent fading include molding graphics on the underside of the keys, using colored plastics instead of painted markings, and applying a protective coating over painted symbols. Another method is to use lasers to etch images from top to bottom of the keypad, so that numbers and letters clearly show through even after years of use, says Bruce Stubbs, director of industry marketing for Intermec, which makes rugged devices.
Data displays must be easy to read in all conditions. Touchscreens, made of polycarbonate plastic or specially strengthened glass, are often used to display information. Plastic is a good choice for devices that are exposed to severe drops and impacts to the touchscreen, or used in applications (such as handling some foods and pharmaceuticals) where glass is prohibited in the vicinity of the product. Glass is best for devices with graphically based software that relies heavily on the touchscreen, say Barcoding Inc. and Psion. Recent advances in strengthened glass production have made this material more suitable for rugged devices.
Internal components are specially strengthened and are surrounded by buffering space to prevent damage when a device is dropped or knocked around. The batteries not only hold a charge longer, but they also have a longer lifespan—up to two years, rather than the typical six months for non-rugged devices, according to Stubbs.
And finally, accessories such as docking stations, mounting hardware, and add-on grips should meet the same standards for ruggedness and reliability as the mobile device itself.
Some devices are "ruggedized" at the time of final configuration with protective reinforcements that add weight and bulk to the product, says Ron D'Ambrosio, president and CEO of rugged device manufacturer Glacier Computer. A better choice, he says, is one that's designed for ruggedness "from the inside out." For example, using a thicker substrate in the circuit board provides more stability and less flexing and vibration while the computer is in use.
It's important that the components be manufactured from the right materials for the application, says Khalid Kidari, director of product management and marketing for DAP Technologies, which makes rugged devices. Depending on the product and the application, lightweight alloys and metals are best for some parts, while plastic that flexes when the device is dropped, so that the plastic absorbs the energy of the impact, is best for others. Devices that are frequently exposed to moisture or salt air should be free of metal that could rust and corrode.
When should you use rugged devices?
Distribution activities, including transportation, freight yard management, direct store delivery, and field service and repair, are ideal for rugged handhelds, says Intermec's Stubbs. In fact, any application where the devices will routinely be exposed to heat, cold, rain, wind, dust, dirt, salt air, and so forth calls for rugged devices. Standard commercial or light-duty industrial equipment simply won't stand up to those conditions. Batteries will quickly run out, screens won't refresh fast enough, and the inner workings will get clogged up or permanently damaged by contaminants.
But even an ordinary warehouse can be tougher on handhelds than you might think, Kidari warns. "If a warehouse is fairly clean and there's little or no dust, then you don't really need full protection and can get away with light industrial devices," he says. A typical warehouse environment, though, has plenty of dust from cardboard and from unsealed concrete floors, he adds.
There's also the danger of damage from impact. Consider the likelihood of damage from forklift collisions. And if warehouse associates are picking or putting away items at anything other than floor level, then it's inevitable that the handheld devices they use will be dropped from on high.
The degree of risk is also an important consideration, says D'Ambrosio of Glacier Computer. Fixed-mount devices that are attached to a forklift or other vehicle are exposed to tough but predictable conditions. But mobile devices, he notes, may encounter a variety of potentially damaging environments, and they must be able to withstand all of them.
Physical conditions are not the only factor to consider. "It's really the business environment that dictates the degree of ruggedness required," observes Psion's Wills. Buyers should ask themselves how dependent their business is on the device's reliable, consistent operation. "The more mission-critical the device is, the more rugged it needs to be," he says. "What would happen to your business if it were not usable?"
Why they make economic sense
Rugged handhelds cost considerably more than standard commercial equipment—often twice as much, depending on the model and the customer's requirements. In addition to design and materials costs, the amount of testing and certifications required raise manufacturers' costs, D'Ambrosio says.
But the list price is simply a starting point, and a host of other factors affect the total cost of ownership for a rugged device. For one thing, users will need to buy fewer of them, rugged equipment makers say. "You have to consider that with a non-ruggedized device, the first time you drop it you'll have to replace it, which means you'll have to keep many extra pieces of equipment on hand," says Wills. "With rugged handhelds, you'll just need a few spares."
For another, rugged handhelds can improve productivity. According to the manufacturers, they rarely fail, and if they do break down, their modular design makes most repairs quick and easy. Their extended battery life also ensures reliable performance throughout the length of a shift and beyond.
In the past, the typical lifespan for ruggedized handheld computers ranged from three to six years, but now it's not unusual for them to last much longer. The manufacturers consulted for this article reported handhelds that are still running after six years or more of around-the-clock operation, including some that are still going strong after 15 years. This longevity makes rugged handhelds an attractive capital investment. "With most customers buying equipment outright on a three-year depreciation cycle," says Psion's Wills, "anything beyond that is free money."
The exotic and the everyday
Considering the abuse that rugged handheld devices are able to take, it's not surprising to find them in some unusual applications. Loggers use them with bar-coded tags on trees that are ready to harvest, growers use them to track produce from field to distribution center, and they even see duty in a brewery, where they safely undergo daily washdowns with a hose along with the rest of the brewing equipment.
But it's not necessary to be in some exotic line of business to consider an investment in ruggedized handheld computers. No matter what type of operation you run, if reliability, productivity, and a return on your investment are high priorities, then rugged devices are worth a look.
What about tablets and iPhones?
There's been a lot of hype recently about the use of consumer devices like smartphones and tablet computers in warehousing and distribution applications. Those devices have their supporters—mostly for their convenience and low initial cost—but many observers dismiss them as being too fragile to handle the vibration, falls, and other impacts that are part and parcel of warehouse operations.
However, ruggedized tablets are now making inroads in the mobile device market. Some users like them because they find the bigger screen easier to read, especially for reading large quantities of data or graphics like maps and technical drawings.
Versatility is another attraction. Because the tablets' functionality resides in the software, users gain flexibility, says Khalid Kidari, director of product management and marketing for DAP Technologies, which includes both rugged tablets and handhelds in its product lineup. One example is differing keyboard views. "Sometimes you might want to display numbers or just alpha keys. That's flexibility you do not get with a physical keyboard." Other advantages cited by vendors include the ability to access multiple software and communications technologies in a single device, and the productivity gained by using one device to carry out a variety of functions.
But can tablets be made rugged enough for a warehouse environment? Manufacturers contend that the external and internal components are as tough as those for handhelds, and that recent advances in glass manufacturing make it possible to sufficiently ruggedize one of the most expensive and vulnerable components of the device: the touchscreen.
Not all manufacturers—or their customers—are convinced that tablets will prove to be reliable enough for warehouse applications. "I think [the adoption of tablets for industrial use] is something that's inevitably going to happen," Bruce Stubbs, director of industry marketing for Intermec, which manufactures rugged handhelds. "But you have to balance ruggedness with cost, so I suspect it's not going to happen as quickly as some think." A more likely scenario, he believes, is that tablets will catch on in applications like field service and transportation but will prove to be inadequate for harsh industrial environments.
Who makes rugged handhelds?
A number of manufacturers design and produce rugged handheld computers for warehouse and transportation applications. The following list, while not exhaustive, includes some of the better-known vendors:
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."