Skip to content
Search AI Powered

Latest Stories

basic training

Bot or not?

Whether you call them "robots" or automated productivity tools, they're on the march into the nation's DCs.

Ro, ro, ro your bot, gently down the stream? On second thought, maybe not. The "B" movies of our misspent youth gave us the idea that robots were mechanical persons, humanoids rather, that contained enough embedded intelligence to turn on—and destroy— their masters and creators.

The core concept actually originated with the Czech proto-science fiction writer Karel Capek and his 1921 play, "R.U.R.," which featured androids that could think for themselves and supplanted the human race. The word "robot" itself is based on a Czech word meaning "serf labor."


Later, the film "2001" by Stanley Kubrick reinforced the notion of latent evil with the malevolent computer HAL. Still later, George Lucas and "Star Wars" turned that perception on its ear, introducing the likeable, even loveable, C3PO and R2D2.

Definitions of "robot" and "robotics" vary widely. Some purists insist that robots resemble human beings and perform tasks normally undertaken by humans. Other pragmatists concede that a robot might sometimes resemble a human, but is essentially defined as being a reprogrammable machine, able to perform repetitive tasks with precision.

It's easy to get excited about the possibility of mechanical "people" with some level of circuitry that acts like intelligence. After all, if we can have robotic pets, can robotic playmates be far behind? Then, it's only a matter of time until automaton maids, cooks, handymen, and distribution center workers join the work force.

An anthropomorphic day may dawn at some future point, but today's workaday world is different. In fact, it's not easy for us to distinguish between productivity tools and "robots."

Latter stages of the industrial revolution
Many early machines were built to perform tasks better and faster than any person—or gang of persons—could possibly do. Think steam shovels, steel rolling mills, cranes, bench presses, and the like. But in those cas-es, human beings have to operate—guide, direct, start, and stop—the machines. On their own, the tools, howev-er complex, are merely so much industrial statuary.

We, collectively, became more aware of "robotics" in manufacturing, as machines were invented and in-stalled to perform specific, and traditionally human-executed, tasks, such as spot welding in automobile assem-bly. They worked (or were intended to work) quickly, flawlessly, and repeatedly, as directed by programmed—and reprogrammable—control systems. The human input was no longer continuous physical control, but one-time, or periodic, mental content.

As time passed, even a last bastion of the manufacturing arts, the steel rolling mill, began to operate itself, programmed with knowledge, practices, and processes extracted from the minds and psyches of the humans who had previously directly controlled them. Does that constitute "robotics"? We think it does, despite the enormity of scale involved.

A whirring sound is heard in the DC
In the supply chain arena, most of what we call robotics has been focused on movement, human movement being generally the most expensive component of distribution center costs. And the definitions get trickier.

So far, our robots and robotics don't look at all like actual people. And many productivity/movement tools can't be considered robotics.

Simple gravity-feed roller conveyor can save enormous amounts of expensive human labor toting, walking, and riding. But it has no intelligence of its own. Contrast that with motorized conveyors, sorters, and recircula-tion loops, driven and directed by complex warehouse control system (WCS) logic—programmed and repro-grammable. Robotics? However simplistic the execution might be, we think the answer is yes.

Then, there are carousels, which move products to people rather than requiring people to travel to the prod-ucts. These are clearly mere productivity aids, requiring an operator to activate them and keep them in motion. But AS/RS (automated storage and retrieval systems) mini-load installations that are controlled by WCS logic, and frequently interfaced with WCS operation of other technologies within the same overall system, are, in our book, robotic—and actually look and "feel" more robotic than conveyors might.

There may be a parallel in wheeled movement. Vehicles propelled by in-floor tow lines are (or, in truth, were, in times of old), no question, productivity aids. Advancing through wire-guided vehicles to laser-guided movement seems, to us, to take this application into the realm of robotics.

Aha!
The dawning realization is that robots and robotics haven't suddenly and miraculously appeared. They have quietly evolved from earlier applications of productivity, quality, and cost improvements. Frankly, we should be expecting continuing evolution and not be standing back waiting for mechanical butlers to greet us with a tall, cool one at the end of a hard day.

Current and emerging state(s)
In today's robotics, the evolution continues. Our work might not be as exciting as the employment of drones to replace human pilots and aircraft in far-off military operations.

But in the realm of bringing work to people, rather than making people travel to where the work is within the DC, advanced systems control location and movement of relatively small pods that both contain product and convey them to a human for pick/pack/ship activities. Think of a massive high-tech carousel that is directed by a control system, with little devices scurrying back and forth all over the facility. A Massachusetts company, Kiva Systems, is at the moment the best-known developer of this family of robotics.

There's more. Pittsburgh's Seegrid continues to expand the capabilities of its family of automated guided vehicles (AGVs), which includes robotic trucks. ThyssenKrupp Krause manufactures a parcel handling robot (Paketroboter) that unloads loose parcels of varying sizes from a truck to a conveyor.

Jervis B. Webb, now a part of Japan's Daifuku, pioneered driverless forklifts that could move pallets from the end of a production line to rack storage, bulk storage, or a loading staging area, occasionally even being able to drop loads into trailers. And at least one company, Belgium's Egemin, provides robotics to load trailers and intermodal containers.

Jungheinrich in Germany continues to develop driverless lift truck varieties and capabilities. Kollmorgen, a Swedish company, adapts existing lift truck fleets to be driverless, and Genco, the product life-cycle specialist, has married the Kollmorgen system with Sky-Trax guidance systems, which eliminates conventional guidance systems, including lasers, for robotic trucks.

Once a dream, now there are several mixed-case pallet building robotics, including some that are integrated with AS/RS installations, notably from Daifuku.

And next?
It should be clear that we've not yet reached Utopia—however Utopia might be defined in a world that is ex-periencing far from full employment. It should be equally clear that the development of increasingly capable and complex productivity tools will not stop and will probably, in our opinion, speed up.

With exponential increases in the power and value proposition of technology-enabled tools—robotics, if you will—the automation of supply chain and logistics tasks once the exclusive province of humans will march on.

On balance, this is a really good thing. We will be more productive—and more competitive. And the nasty, uncomfortable, and dangerous work will be done by machines.

On the flip side, the nature of jobs will continue to shift, and not all displaced workers will be able to keep pace. The education—and native intelligence—required for future DC operational work will escalate.

These developments will pose challenges for both managers and working associates, and the time to start thinking about long-term societal and individual implications is probably right now.

The Latest

More Stories

Trucking industry experiences record-high congestion costs

Trucking industry experiences record-high congestion costs

Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.

The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.

Keep ReadingShow less

Featured

From pingpong diplomacy to supply chain diplomacy?

There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.

Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”

Keep ReadingShow less
forklift driving through warehouse

Hyster-Yale to expand domestic manufacturing

Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.

That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.

Keep ReadingShow less
map of truck routes in US

California moves a step closer to requiring EV sales only by 2035

Federal regulators today gave California a green light to tackle the remaining steps to finalize its plan to gradually shift new car sales in the state by 2035 to only zero-emissions models — meaning battery-electric, hydrogen fuel cell, and plug-in hybrid cars — known as the Advanced Clean Cars II Rule.

In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.

Keep ReadingShow less
screenshots for starboard trade software

Canadian startup gains $5.5 million for AI-based global trade platform

A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.

The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.

Keep ReadingShow less