Eager to see how its newly developed fuel cell device would fare in trials, East Penn Manufacturing decided to test the unit itself. But round-the-clock DC operations and 4,000-pound loads would make this a rigorous trial.
James Cooke is a principal analyst with Nucleus Research in Boston, covering supply chain planning software. He was previously the editor of CSCMP?s Supply Chain Quarterly and a staff writer for DC Velocity.
When it came time to begin testing its prototype hydrogen fuel pack for lift trucks, East Penn Manufacturing didn't have to look far for a beta tester. With a 180,000-square-foot distribution center operating 24 hours a day, the company already had an ideal test lab. Why not test the device itself?
And so, for the past two-plus years, the company has been using eight forklift trucks powered by the device, a hybrid fuel cell/lead-acid battery unit, at its DC in Topton, Pa. The trucks work alongside their 20 battery-powered counterparts at the cavernous facility, which operates around the clock five days a week. As tractor-trailers from the plants arrive at the DC, the forklifts offload pallets of batteries and place them in storage. They also ferry pallets from storage to the loading-dock area when needed. Shuttling pallet loads of batteries is no small task; the loaded skids weigh between 3,500 and 4,000 pounds apiece on average.
Best known for its Deka brand batteries, East Penn Manufacturing Co. Inc. makes batteries and accessories for the automotive, marine, farm equipment, and industrial truck markets. Though a DC operated by a leading battery maker might seem an unlikely proving ground for fuel cells—after all, fuel cells might soon be competing with batteries in the motive power market—East Penn doesn't see the cells as a threat. In fact, it sees them as a potential addition to its product line.
East Penn is not working on the fuel cell project alone, however. In December 2004, the Lyon Station, Pa.-based company began discussions with Nuvera Fuel Cells of Billerica, Mass., about developing a fuel cell-based unit for electric lift trucks. The result of their collaboration is the ReadyPower, a hybrid device that combines Nuvera's fuel cell technology with East Penn's lead-acid battery design. The two companies eventually hope to make the device available commercially.
Before it can begin selling the ReadyPower to customers, however, East Penn first needs proof of concept. Testing the unit on its own lift trucks has given the battery maker a way to validate the concept as well as work out any bugs. "We want this operation to be as seamless as possible for our customers' operations," says Jim Rubright, East Penn's vice president of motive power sales and the executive in charge of the fuel cell project. "They don't have time to experiment with new technology. They need to know it will work and work well, and we plan on proving that to them by using it in our own operation."
Getting the lead out
Although the use of fuel cells to power vehicles is still in the developmental stages, the technology itself is nothing new. First developed in the 19th century, fuel cells later were made famous when the National Aeronautics and Space Administration used fuel cells to supply electricity and water on manned space flights.
Hydrogen fuel cells like the ones used in the ReadyPower units use hydrogen and oxygen to produce electricity. The only byproducts are water and heat, which makes them an environmentally friendly power source. Fuel cells differ from batteries in that they consume reactant (hydrogen), which must be replenished, whereas batteries store energy chemically. The ReadyPower unit consists of a fuel cell stack and a set of "peaking batteries" to provide auxiliary power. The peaking batteries are sealed absorbed glass mat (AGM) units that require no maintenance.
In operation, the fuel cell provides a regular supply of electric power to operate the vehicle and, at the same time, recharge the peaking batteries on board the truck. If the truck needs extra power to, say, lift a heavy load, the unit draws on the batteries for the extra oomph. "If the truck needs more power than the fuel cell can provide, the batteries kick in," explains Rubright.
The ReadyPower unit also contains a tank filled with compressed hydrogen gas. Although the size of the tank may vary, all tanks hold at least 0.6 kilograms of hydrogen. During its trials, East Penn has been experimenting with different sized hydrogen tanks and peaking batteries. (The fuel cell stack, by contrast, has remained a constant size in all models—14.6 by 17.3 by 20.7 inches.) A control panel is plugged into the ReadyPower unit and mounted on the lift truck to let the operator know when his fuel tank is empty.
The ReadyPower unit itself was engineered to be easily interchangeable with a lead-acid battery. "Our design is basically plug and play," Rubright says. "We can pull a lead-acid battery out and put a ReadyPower in its place if we want to, with no modifications to the truck."
Rubright reports that one of the challenges in designing the ReadyPower unit was handling the disposal of the water generated by the system. After some experimentation, East Penn came up with a mechanism for water evaporation as well as reuse. "In some other systems, you have to empty a [water] collection tank," he explains. "Ours is a water-neutral system."
In the design process, East Penn also had to address counterbalance issues— that is, keeping weight distributed evenly in order to prevent the truck from tipping over. The ReadyPower unit meets the same center-of-gravity and counterweight requirements as the lead-acid battery it is replacing.
Rubright reports that the ReadyPower unit has undergone constant tweaking during the last two years of testing. "We've subjected our unit to shock and vibration testing," he says. "And we've [made] a lot of improvements."
Consistent performers
As for the hybrid units' performance, the forklift drivers report several advantages to using the ReadyPower unit over traditional lead-acid batteries. For instance, the hybrids eliminate the need for operators to drive over to a special charging area at the end of a shift and remove a 3,000-pound battery for recharging. Instead, the drivers pull the truck up to a dispenser and refuel the unit with liquid hydrogen. Refueling takes just 30 to 90 seconds. "The operators love it," says Rubright. "And you no longer have to maintain a battery room with charging equipment."
The operators also report that the trucks using the ReadyPower units run "crisp." As Rubright explains, they're referring to the hybrid unit's ability to deliver a steady supply of power throughout the shift, in contrast to the traditional battery, whose voltage drops as the day wears on, making the truck sluggish. "As long as you have hydrogen in the [ReadyPower's] tank," he says, "the truck operates as if it's on a freshly charged battery all day long."
Rubright suspects that the elimination of "voltage lag" has led to increased productivity within the distribution center. In future tests he hopes to be able to demonstrate that operators on ReadyPower-equipped trucks move more pallets per day than their counterparts on traditional trucks do.
A chicken-egg dilemma
Although the beta ReadyPower units have shown considerable promise in testing, the technology still faces some obstacles to widespread adoption. For starters, a distribution facility using this technology needs storage tanks of hydrogen fuel on site. A company could purchase hydrogen from a commercial gas dealer or generate it from natural gas. East Penn plans to offer customers a "Total Power Solution" that provides on-site hydrogen generation, storage, and dispensing abilities.
In its own operation, the company has been producing hydrogen from natural gas at its site through the process of steam reforming. In that process, natural gas (mostly methane) is combined with steam over a catalyst bed to produce hydrogen. "There's a significant advantage to generating your own hydrogen," says Rubright. "The cost per kilogram for generating your own hydrogen can be half to two-thirds the cost of what you buy."
But the main obstacle to wider deployment of this technology remains price. "The industry knows we have to bring the cost down," says Rubright, who declined to give specifics on the actual cost of a ReadyPower unit. "It's the old chicken and egg thing. You have to have economies of scale [to bring down the cost], and at the same time, you're trying to get the technology out there in the market [to develop the needed scale]." He acknowledges that the technology may never be economical for light-duty or short-shift applications.
As for the next step, East Penn is now preparing to expand its pilot beyond its own four walls. Rubright reports that the company has lined up customers to deploy beta ReadyPower units in their own lift trucks later this year.
With more companies signing on to use the hybrid technology, is East Penn worried about the effects on its battery sales? Rubright dismisses that concern. He believes that the traditional lead-acid battery units will continue to be sold alongside units like the ReadyPower. "We envision this as one of the solutions in the bag," he says. "Whatever works best for the customer is what we want to recommend."
Editor's note: To read more about the use of fuel cells to power industrial trucks, see our June 2007 story "fuel cells get hotter."
Leaders at American ports are cheering the latest round of federal infrastructure funding announced today, which will bring almost $580 million in Port Infrastructure Development Program (PIDP) awards, funding 31 projects in 15 states and one territory.
“Modernizing America’s port infrastructure is essential to strengthening the multimodal network that supports our nation's supply chain,” Maritime Administrator Ann Phillips said in a release. “Approximately 2.3 billion short tons of goods move through U.S. waterways each year, and the benefits of developing port infrastructure extend far beyond the maritime sector. This funding enhances the flow and capacity of goods moved, bolstering supply chain resilience across all transportation modes, and addressing the environmental and health impacts on port communities.”
Even as the new awardees begin the necessary paperwork, industry group the American Association of Port Authorities (AAPA) said it continues to urge Congress to continue funding PIDP at the full authorized amount and get shovels in the ground faster by passing the bipartisan Permitting Optimization for Responsible Transportation (PORT) Act, which slashes red tape, streamlines outdated permitting, and makes the process more efficient and predictable.
"Our nation's ports sincerely thank our bipartisan Congressional leaders, as well as the USDOT for making these critical awards possible," Cary Davis, AAPA President and CEO, said in a release. "Now comes the hard part. AAPA ports will continue working closely with our Federal Government partners to get the money deployed and shovels in the ground as soon as possible so we can complete these port infrastructure upgrades and realize the benefits to our nation's supply chain and people faster."
Supply chains are poised for accelerated adoption of mobile robots and drones as those technologies mature and companies focus on implementing artificial intelligence (AI) and automation across their logistics operations.
That’s according to data from Gartner’s Hype Cycle for Mobile Robots and Drones, released this week. The report shows that several mobile robotics technologies will mature over the next two to five years, and also identifies breakthrough and rising technologies set to have an impact further out.
Gartner’s Hype Cycle is a graphical depiction of a common pattern that arises with each new technology or innovation through five phases of maturity and adoption. Chief supply chain officers can use the research to find robotic solutions that meet their needs, according to Gartner.
Gartner, Inc.
The mobile robotic technologies set to mature over the next two to five years are: collaborative in-aisle picking robots, light-cargo delivery robots, autonomous mobile robots (AMRs) for transport, mobile robotic goods-to-person systems, and robotic cube storage systems.
“As organizations look to further improve logistic operations, support automation and augment humans in various jobs, supply chain leaders have turned to mobile robots to support their strategy,” Dwight Klappich, VP analyst and Gartner fellow with the Gartner Supply Chain practice, said in a statement announcing the findings. “Mobile robots are continuing to evolve, becoming more powerful and practical, thus paving the way for continued technology innovation.”
Technologies that are on the rise include autonomous data collection and inspection technologies, which are expected to deliver benefits over the next five to 10 years. These include solutions like indoor-flying drones, which utilize AI-enabled vision or RFID to help with time-consuming inventory management, inspection, and surveillance tasks. The technology can also alleviate safety concerns that arise in warehouses, such as workers counting inventory in hard-to-reach places.
“Automating labor-intensive tasks can provide notable benefits,” Klappich said. “With AI capabilities increasingly embedded in mobile robots and drones, the potential to function unaided and adapt to environments will make it possible to support a growing number of use cases.”
Humanoid robots—which resemble the human body in shape—are among the technologies in the breakthrough stage, meaning that they are expected to have a transformational effect on supply chains, but their mainstream adoption could take 10 years or more.
“For supply chains with high-volume and predictable processes, humanoid robots have the potential to enhance or supplement the supply chain workforce,” Klappich also said. “However, while the pace of innovation is encouraging, the industry is years away from general-purpose humanoid robots being used in more complex retail and industrial environments.”
An eight-year veteran of the Georgia company, Hakala will begin his new role on January 1, when the current CEO, Tero Peltomäki, will retire after a long and noteworthy career, continuing as a member of the board of directors, Cimcorp said.
According to Hakala, automation is an inevitable course in Cimcorp’s core sectors, and the company’s end-to-end capabilities will be crucial for clients’ success. In the past, both the tire and grocery retail industries have automated individual machines and parts of their operations. In recent years, automation has spread throughout the facilities, as companies want to be able to see their entire operation with one look, utilize analytics, optimize processes, and lead with data.
“Cimcorp has always grown by starting small in the new business segments. We’ve created one solution first, and as we’ve gained more knowledge of our clients’ challenges, we have been able to expand,” Hakala said in a release. “In every phase, we aim to bring our experience to the table and even challenge the client’s initial perspective. We are interested in what our client does and how it could be done better and more efficiently.”
Although many shoppers will
return to physical stores this holiday season, online shopping remains a driving force behind peak-season shipping challenges, especially when it comes to the last mile. Consumers still want fast, free shipping if they can get it—without any delays or disruptions to their holiday deliveries.
One disruptor that gets a lot of headlines this time of year is package theft—committed by so-called “porch pirates.” These are thieves who snatch parcels from front stairs, side porches, and driveways in neighborhoods across the country. The problem adds up to billions of dollars in stolen merchandise each year—not to mention headaches for shippers, parcel delivery companies, and, of course, consumers.
Given the scope of the problem, it’s no wonder online shoppers are worried about it—especially during holiday season. In its annual report on package theft trends, released in October, the
security-focused research and product review firm Security.org found that:
17% of Americans had a package stolen in the past three months, with the typical stolen parcel worth about $50. Some 44% said they’d had a package taken at some point in their life.
Package thieves poached more than $8 billion in merchandise over the past year.
18% of adults said they’d had a package stolen that contained a gift for someone else.
Ahead of the holiday season, 88% of adults said they were worried about theft of online purchases, with more than a quarter saying they were “extremely” or “very” concerned.
But it doesn’t have to be that way. There are some low-tech steps consumers can take to help guard against porch piracy along with some high-tech logistics-focused innovations in the pipeline that can protect deliveries in the last mile. First, some common-sense advice on avoiding package theft from the Security.org research:
Install a doorbell camera, which is a relatively low-cost deterrent.
Bring packages inside promptly or arrange to have them delivered to a secure location if no one will be at home.
Consider using click-and-collect options when possible.
If the retailer allows you to specify delivery-time windows, consider doing so to avoid having packages sit outside for extended periods.
These steps may sound basic, but they are by no means a given: Fewer than half of Americans consider the timing of deliveries, less than a third have a doorbell camera, and nearly one-fifth take no precautions to prevent package theft, according to the research.
Tech vendors are stepping up to help. One example is
Arrive AI, which develops smart mailboxes for last-mile delivery and pickup. The company says its Mailbox-as-a-Service (MaaS) platform will revolutionize the last mile by building a network of parcel-storage boxes that can be accessed by people, drones, or robots. In a nutshell: Packages are placed into a weatherproof box via drone, robot, driverless carrier, or traditional delivery method—and no one other than the rightful owner can access it.
Although the platform is still in development, the company already offers solutions for business clients looking to secure high-value deliveries and sensitive shipments. The health-care industry is one example: Arrive AI offers secure drone delivery of medical supplies, prescriptions, lab samples, and the like to hospitals and other health-care facilities. The platform provides real-time tracking, chain-of-custody controls, and theft-prevention features. Arrive is conducting short-term deployments between logistics companies and health-care partners now, according to a company spokesperson.
The MaaS solution has a pretty high cool factor. And the common-sense best practices just seem like solid advice. Maybe combining both is the key to a more secure last mile—during peak shipping season and throughout the year as well.
The Boston-based enterprise software vendor Board has acquired the California company Prevedere, a provider of predictive planning technology, saying the move will integrate internal performance metrics with external economic intelligence.
According to Board, the combined technologies will integrate millions of external data points—ranging from macroeconomic indicators to AI-driven predictive models—to help companies build predictive models for critical planning needs, cutting costs by reducing inventory excess and optimizing logistics in response to global trade dynamics.
That is particularly valuable in today’s rapidly changing markets, where companies face evolving customer preferences and economic shifts, the company said. “Our customers spend significant time analyzing internal data but often lack visibility into how external factors might impact their planning,” Jeff Casale, CEO of Board, said in a release. “By integrating Prevedere, we eliminate those blind spots, equipping executives with a complete view of their operating environment. This empowers them to respond dynamically to market changes and make informed decisions that drive competitive advantage.”