Imported oil and its attendant risks. Greenhouse gases and global warming. An economy dependent on a vibrant freight transportation system. Add those up and the result is a growing imperative to find alternatives to traditional fuels.
Peter Bradley is an award-winning career journalist with more than three decades of experience in both newspapers and national business magazines. His credentials include seven years as the transportation and supply chain editor at Purchasing Magazine and six years as the chief editor of Logistics Management.
In 1925, a pair of German scientists applied for a patent for a process they had developed to turn carbon monoxide and hydrogen derived from coal into a liquid fuel. Franz Fischer and Hans Tropsch may not have thought of the process they developed as an alternative fuel in the way we think about that term today. But diesel fuel created through the Fischer-Tropsch process is one of a number of technologies that could transform the way freight carriers fuel their vehicles.
In some ways, the future is already here, with trucks of all sorts running on propane, compressed natural gas (CNG), and liquefied natural gas (LNG). Carriers like UPS and FedEx as well as many utility companies have been using alternative fuels in their fleet vehicles for several years.
What's driving these initiatives is a combination of worrisome issues. To start with, American politicians and the public want to reduce the nation's dependence on imported petroleum—though opinions vary on how to reach that goal. There's also a growing movement to reduce greenhouse gases as more scientists come to a consensus that the earth is warming and carbon emissions are part of the reason. And at $90 a barrel, oil has become an expensive commodity.
That all adds up to growing pressure on carriers and their equipment suppliers to find ways to run clean and lean operations.
"We want to lessen dependence on crude oil," says Robert Hall, director of vehicle engineering for UPS. "The world is using up its crude oil. To sustain our fleet and our business, we need to be prepared long term for the use of multiple fuels. Emissions reduction and quality are another issue." UPS says it has the largest fleet of vehicles operating on alternative fuels in the transportation industry, including 600 vehicles running on propane and 800 running on CNG.
Ready to come clean?
The imperative seems clear enough. But are American trucking fleets ready to make wholesale changes to their operations? In an internal document provided by one large contract fleet company that operates thousands of vehicles, company fleet managers candidly assessed the variety of technologies available to them. (The document was made available to DC VELOCITY with the understanding that its source would not be disclosed.)
Though it acknowledged the potential benefits of shifting to alternative fuels—reduced exhaust emissions, reduced dependence on imported petroleum, cost savings, and burnishing the corporate image—the analysis also carried some caveats. For example, reduction of some types of pollutants can occasionally lead to an increase in other types. It also warned that potential savings in fuel costs have to be balanced against potential higher costs in vehicle operations, including vehicle costs, payload capacity, vehicle range, power and torque, and fuel availability.
But alternative fuels and associated technologies aimed at more efficient operations are almost certainly in the offing for most fleets. The U.S. Department of Energy (DOE) has established a number of programs in partnership with industry aimed at research into and development of alternative fuels and a variety of technologies aimed at cleaner, more efficient freight operations.
Not surprisingly, much of the impetus for improvement comes from the West Coast, particularly California, where air quality has become a key public health concern. In June, for instance, California's South Coast Air Quality Management District, an air pollution control agency, approved a $2.9 million expenditure for 20 LNG heavy duty vehicles from Westport Innovations Inc., a Vancouver, B.C.-based developer of alternative fuel technology. The trucks will be operated by Total Transportation Services at the ports of Los Angeles and Long Beach.
Also active on the West Coast is WestStart-CALSTART, a not-for-profit consortium of some 145 companies focused on reducing transportation-related air pollution. "Our goal … is to see the development of clean transportation technologies," says John Boesel, the group's president and CEO.
Unlike some industry-sponsored organizations, the group does not promote a particular solution; it remains neutral on both fuel and technology. "We try to act as a strategic partner and facilitator to help all the companies succeed," Boesel says. Its efforts include programs focused on commercial traffic. In September, for example, WestStart-CALSTART sponsored the sixth annual National Hybrid Truck Users Forum in Washington state (for a list of upcoming events, visit www. calstart.org).
Big Brown goes green
In fact, hybrid vehicles have been much in the news recently. Last year, for example, UPS conducted a highly publicized hybrid vehicle test with the U.S. Environmental Protection Agency (EPA). For several months, UPS used a fleet of hydraulic hybrid delivery vehicles in the Detroit area, using a technology it developed in a partnership with the EPA as well as the U.S. Army, International Truck and Engine Corp., and Eaton Corp.
The technology combines an efficient diesel engine with a hydraulic propulsion system in place of the conventional drivetrain and transmission. Hydraulic pumps and storage tanks store energy, similar to what is done with electric motors and batteries in hybrid electric vehicles. Fuel economy is increased in three ways, the EPA explains: Vehicle braking energy is recovered, the engine is operated more efficiently, and the engine can be shut off when stopped or decelerating.
In laboratory testing, the technology achieved a 60- to 70-percent improvement in fuel economy compared to conventional UPS package vans, according to the EPA. It also produced a 40-percent-plus reduction in carbon dioxide emissions.
The EPA estimates that when the hybrid components are manufactured in high volume, the added costs could be recovered in less than three years through lower fuel and brake maintenance costs. The trucks may also be eligible to qualify for a tax credit of up to 40 percent of the incremental cost of the vehicle, the EPA says.
A question of cost
Boesel reports that today's research initiatives go well beyond the fuels themselves to include ways to improve aerodynamics, boost fuel economy, and reduce vehicle weight. In fact, today, the drawback to greater deployment of innovative technologies is often not so much the availability of the technology itself, but cost. Batteries for hybrids are heavy and expensive. Conversion costs to make use of new fuels can be high. "The technology manufacturers need to keep working on lowering costs," concedes Boesel. "We are getting to the point on a life-cycle basis where these systems are making sense, but often fleets buy on the purchase cost."
As for how to make the technology more affordable, the answer could be as simple as scaling up production. As demand for a technology picks up, unit costs would likely fall. But that's not quite as easy as it sounds. "We have the chicken and the egg," Boesel says. Producing advanced technology trucks in low volume limits demand, but demand is required for manufacturers to ramp up production. The issue is creating the demand. But if market forces don't do it, regulation and law might.
Take the current and controversial proposal by the ports of Los Angeles and Long Beach. The two ports have proposed to the Federal Maritime Commission a plan to implement what they call their Clean Truck Program. According to an analysis by the National Industrial Transportation League, which is contesting the proposal, this program would require drayage companies to meet an accelerated schedule for implementing state and federal emissions standards.
Additionally, the California legislature late in its session this year adopted a bill aimed at raising smog abatement fees for all vehicles to fund research on alternative fuels. In mid-October, Gov. Arnold Schwarzenegger signed the bill into law.
In the meantime, fleet managers continue to investigate a range of possibilities. UPS's Hall says, "Over the short term—the next five to 15 years—it appears that hybrid electrics will be the leaders in getting us where we need to be. CNG and propane can play a role as well." He agrees with Boesel's assessment that technological advances and lower prices will spur more widespread adoption.
The road ahead
Right now, additional research is under way under a variety of auspices. The DOE's National Renewable Energy Laboratory, for example, sponsors research under the umbrella of its Advanced Heavy Hybrid Propulsion Systems Project. NREL says on its Web site that it projects that its efforts will "increase the fuel efficiency of heavy trucks and buses by as much as 100 percent, and improve their emissions to meet the Environmental Protection Agency's 2007-2010 emission standards."
Also active on the research front is the 21st Century Truck Partnership, an industry-government collaboration among heavy-duty engine manufacturers, heavy-duty truck and bus manufacturers, heavy hybrid powertrain manufacturers, and four federal government agencies. The consortium, which develops both public and proprietary research projects, supports research, development, and demonstration projects in five areas: engine systems, heavy-duty hybrids, idle reduction, safety, and parasitic losses (factors like aerodynamic drag resistance and rolling resistance).
In the meantime, the switch to alternative fuels and technologies is already under way in both public and private fleets, driven by economic, political, regulatory, and other forces. Given the size of the nation's fleet and the infrastructure challenges, the revolution will likely be slow to ignite. But ignite it will. A warming planet and volatility in oil supplies have put alternative fuels and technologies back in the spotlight for the first time since the energy crisis of the '70s—and this time, it's likely for good.
what are the options?
Any discussion of alternative fuels raises the question of what fuels are available—or might become available in the near future. What follows is an edited version of a list of alternative fuels compiled by the U.S. Department of Energy's Alternative Fuels and Advanced Vehicles Data Center and other sources. Not all of the alternatives may be appropriate for freight operations.
Biodiesel is a renewable alternative fuel produced from vegetable oils and animal fats. Although pure biodiesel (or biodiesel blended with petroleum diesel) can be used to fuel diesel vehicles, providing emissions and safety benefits, it may also produce increased NOx emissions. It has physical properties similar to those of petroleum diesel. A blend of 5 percent biodiesel and 95 percent petroleum diesel is currently accepted by all diesel engine manufacturers.
Electricity can be used to power electric and plug-in hybrid electric vehicles directly from the power grid. Vehicles that run on electricity produce no tailpipe emissions. The only emissions that can be attributed to electricity are those generated in the production process at the power plant. Electricity is easily accessible for short-range driving.
Ethanol, also known as ethyl alcohol or grain alcohol, is a renewable fuel primarily made from starch crops, like corn. E85—a blend of 85 percent ethanol and 15 percent gasoline—can be used in light-, medium-, and heavy-duty vehicles. Its usage results in a 20-percent reduction in miles per gallon over conventional gasoline. Nearly one-third of U.S. gasoline contains ethanol in a low-level blend to reduce air pollution.
Hydrogen, the simplest and most abundant element in the universe, can be produced from fossil fuels and biomass and by electrolyzing water. Producing hydrogen with renewable energy and using it in fuel-cell vehicles holds the promise of virtually pollution-free transportation. Because hydrogen has a small amount of energy by volume compared with other fuels, storing sufficient quantities on a vehicle using currently available technology would require a tank larger than a typical car's trunk. Other primary problems at this time include the high cost of both the vehicles and the fuel.
Methanol, also known as wood alcohol, can be used as an alternative fuel. The use of methanol has declined significantly since the early 1990s, and auto makers are no longer manufacturing vehicles that run on it. It is used in some heavy truck and bus applications, but is not widely available.
Natural gas, a mixture of hydrocarbons, predominantly methane, is a domestically produced alternative fuel that can produce significantly fewer harmful emissions than gasoline or diesel when used in natural gas vehicles. It has a high octane rating and excellent properties for spark-ignited internal combustion engines. Although natural gas accounts for approximately one-quarter of the energy used in the United States, only about one-tenth of 1 percent is currently used for transportation fuel. It must be stored onboard a vehicle in either a compressed or liquefied state.
Propane is the most commonly used alternative transportation fuel. Also known as liquefied petroleum gas (LPG), it has a high energy density, giving propane vehicles good driving range. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. Produced as a by-product of natural gas processing and crude oil refining, propane is non-toxic and presents no threat to soil, surface water, or groundwater.
Several other vehicle fuels are in the early stages of development, according to the Alternative Fuels and Advanced Vehicles Data Center. They include:
Biobutanol, an alcohol that can be produced through processing of domestically grown crops, like corn and sugar beets. Like ethanol, it can be used in gasoline-powered internal combustion engines.
Biogas, sometimes called swamp gas, landfill gas, or digester gas. Biogas is produced from the anaerobic digestion of organic matter such as animal manure, sewage, and municipal solid waste. After processing, it becomes a renewable substitute for natural gas and can be used to fuel natural gas vehicles. DOE says a 2007 report estimated that 12,000 vehicles are being fueled with upgraded biogas worldwide, with 70,000 biogas-fueled vehicles predicted by 2010.
Biomass-to-liquids fuels, which are produced through the conversion of diverse biomass feedstocks into a range of liquid fuels. One major benefit of these fuels is their compatibility with existing vehicle technologies and fuel distribution systems: Biomass-derived gasoline and diesel could be transported through existing pipelines, dispensed at existing fueling stations, and used to fuel today's gasoline- and diesel-powered vehicles.
Fischer-Tropsch diesel, which is made by converting gaseous hydrocarbons, like natural gas and gasified coal or biomass, into liquid fuel. Fischer-Tropsch diesel can be substituted directly for petroleum diesel to fuel diesel-powered vehicles without modification to the vehicle engine or fueling infrastructure.
Autonomous forklift maker Cyngn is deploying its DriveMod Tugger model at COATS Company, the largest full-line wheel service equipment manufacturer in North America, the companies said today.
By delivering the self-driving tuggers to COATS’ 150,000+ square foot manufacturing facility in La Vergne, Tennessee, Cyngn said it would enable COATS to enhance efficiency by automating the delivery of wheel service components from its production lines.
“Cyngn’s self-driving tugger was the perfect solution to support our strategy of advancing automation and incorporating scalable technology seamlessly into our operations,” Steve Bergmeyer, Continuous Improvement and Quality Manager at COATS, said in a release. “With its high load capacity, we can concentrate on increasing our ability to manage heavier components and bulk orders, driving greater efficiency, reducing costs, and accelerating delivery timelines.”
Terms of the deal were not disclosed, but it follows another deployment of DriveMod Tuggers with electric automaker Rivian earlier this year.
Manufacturing and logistics workers are raising a red flag over workplace quality issues according to industry research released this week.
A comparative study of more than 4,000 workers from the United States, the United Kingdom, and Australia found that manufacturing and logistics workers say they have seen colleagues reduce the quality of their work and not follow processes in the workplace over the past year, with rates exceeding the overall average by 11% and 8%, respectively.
The study—the Resilience Nation report—was commissioned by UK-based regulatory and compliance software company Ideagen, and it polled workers in industries such as energy, aviation, healthcare, and financial services. The results “explore the major threats and macroeconomic factors affecting people today, providing perspectives on resilience across global landscapes,” according to the authors.
According to the study, 41% of manufacturing and logistics workers said they’d witnessed their peers hiding mistakes, and 45% said they’ve observed coworkers cutting corners due to apathy—9% above the average. The results also showed that workers are seeing colleagues take safety risks: More than a third of respondents said they’ve seen people putting themselves in physical danger at work.
The authors said growing pressure inside and outside of the workplace are to blame for the lack of diligence and resiliency on the job. Internally, workers say they are under pressure to deliver more despite reduced capacity. Among the external pressures, respondents cited the rising cost of living as the biggest problem (39%), closely followed by inflation rates, supply chain challenges, and energy prices.
“People are being asked to deliver more at work when their resilience is being challenged by economic and political headwinds,” Ideagen’s CEO Ben Dorks said in a statement announcing the findings. “Ultimately, this is having a determinantal impact on business productivity, workplace health and safety, and the quality of work produced, as well as further reducing the resilience of the nation at large.”
Respondents said they believe technology will eventually alleviate some of the stress occurring in manufacturing and logistics, however.
“People are optimistic that emerging tech and AI will ultimately lighten the load, but they’re not yet feeling the benefits,” Dorks added. “It’s a gap that now, more than ever, business leaders must look to close and support their workforce to ensure their staff remain safe and compliance needs are met across the business.”
The “2024 Year in Review” report lists the various transportation delays, freight volume restrictions, and infrastructure repair costs of a long string of events. Those disruptions include labor strikes at Canadian ports and postal sites, the U.S. East and Gulf coast port strike; hurricanes Helene, Francine, and Milton; the Francis Scott key Bridge collapse in Baltimore Harbor; the CrowdStrike cyber attack; and Red Sea missile attacks on passing cargo ships.
“While 2024 was characterized by frequent and overlapping disruptions that exposed many supply chain vulnerabilities, it was also a year of resilience,” the Project44 report said. “From labor strikes and natural disasters to geopolitical tensions, each event served as a critical learning opportunity, underscoring the necessity for robust contingency planning, effective labor relations, and durable infrastructure. As supply chains continue to evolve, the lessons learned this past year highlight the increased importance of proactive measures and collaborative efforts. These strategies are essential to fostering stability and adaptability in a world where unpredictability is becoming the norm.”
In addition to tallying the supply chain impact of those events, the report also made four broad predictions for trends in 2025 that may affect logistics operations. In Project44’s analysis, they include:
More technology and automation will be introduced into supply chains, particularly ports. This will help make operations more efficient but also increase the risk of cybersecurity attacks and service interruptions due to glitches and bugs. This could also add tensions among the labor pool and unions, who do not want jobs to be replaced with automation.
The new administration in the United States introduces a lot of uncertainty, with talks of major tariffs for numerous countries as well as talks of US freight getting preferential treatment through the Panama Canal. If these things do come to fruition, expect to see shifts in global trade patterns and sourcing.
Natural disasters will continue to become more frequent and more severe, as exhibited by the wildfires in Los Angeles and the winter storms throughout the southern states in the U.S. As a result, expect companies to invest more heavily in sustainability to mitigate climate change.
The peace treaty announced on Wednesday between Isael and Hamas in the Middle East could support increased freight volumes returning to the Suez Canal as political crisis in the area are resolved.
The French transportation visibility provider Shippeo today said it has raised $30 million in financial backing, saying the money will support its accelerated expansion across North America and APAC, while driving enhancements to its “Real-Time Transportation Visibility Platform” product.
The funding round was led by Woven Capital, Toyota’s growth fund, with participation from existing investors: Battery Ventures, Partech, NGP Capital, Bpifrance Digital Venture, LFX Venture Partners, Shift4Good and Yamaha Motor Ventures. With this round, Shippeo’s total funding exceeds $140 million.
Shippeo says it offers real-time shipment tracking across all transport modes, helping companies create sustainable, resilient supply chains. Its platform enables users to reduce logistics-related carbon emissions by making informed trade-offs between modes and carriers based on carbon footprint data.
"Global supply chains are facing unprecedented complexity, and real-time transport visibility is essential for building resilience” Prashant Bothra, Principal at Woven Capital, who is joining the Shippeo board, said in a release. “Shippeo’s platform empowers businesses to proactively address disruptions by transforming fragmented operations into streamlined, data-driven processes across all transport modes, offering precise tracking and predictive ETAs at scale—capabilities that would be resource-intensive to develop in-house. We are excited to support Shippeo’s journey to accelerate digitization while enhancing cost efficiency, planning accuracy, and customer experience across the supply chain.”
Donald Trump has been clear that he plans to hit the ground running after his inauguration on January 20, launching ambitious plans that could have significant repercussions for global supply chains.
As Mark Baxa, CSCMP president and CEO, says in the executive forward to the white paper, the incoming Trump Administration and a majority Republican congress are “poised to reshape trade policies, regulatory frameworks, and the very fabric of how we approach global commerce.”
The paper is written by import/export expert Thomas Cook, managing director for Blue Tiger International, a U.S.-based supply chain management consulting company that focuses on international trade. Cook is the former CEO of American River International in New York and Apex Global Logistics Supply Chain Operation in Los Angeles and has written 19 books on global trade.
In the paper, Cook, of course, takes a close look at tariff implications and new trade deals, emphasizing that Trump will seek revisions that will favor U.S. businesses and encourage manufacturing to return to the U.S. The paper, however, also looks beyond global trade to addresses topics such as Trump’s tougher stance on immigration and the possibility of mass deportations, greater support of Israel in the Middle East, proposals for increased energy production and mining, and intent to end the war in the Ukraine.
In general, Cook believes that many of the administration’s new policies will be beneficial to the overall economy. He does warn, however, that some policies will be disruptive and add risk and cost to global supply chains.
In light of those risks and possible disruptions, Cook’s paper offers 14 recommendations. Some of which include:
Create a team responsible for studying the changes Trump will introduce when he takes office;
Attend trade shows and make connections with vendors, suppliers, and service providers who can help you navigate those changes;
Consider becoming C-TPAT (Customs-Trade Partnership Against Terrorism) certified to help mitigate potential import/export issues;
Adopt a risk management mindset and shift from focusing on lowest cost to best value for your spend;
Increase collaboration with internal and external partners;
Expect warehousing costs to rise in the short term as companies look to bring in foreign-made goods ahead of tariffs;
Expect greater scrutiny from U.S. Customs and Border Patrol of origin statements for imports in recognition of attempts by some Chinese manufacturers to evade U.S. import policies;
Reduce dependency on China for sourcing; and
Consider manufacturing and/or sourcing in the United States.
Cook advises readers to expect a loosening up of regulations and a reduction in government under Trump. He warns that while some world leaders will look to work with Trump, others will take more of a defiant stance. As a result, companies should expect to see retaliatory tariffs and duties on exports.
Cook concludes by offering advice to the incoming administration, including being sensitive to the effect retaliatory tariffs can have on American exports, working on federal debt reduction, and considering promoting free trade zones. He also proposes an ambitious water works program through the Army Corps of Engineers.