Peter Bradley is an award-winning career journalist with more than three decades of experience in both newspapers and national business magazines. His credentials include seven years as the transportation and supply chain editor at Purchasing Magazine and six years as the chief editor of Logistics Management.
Imagine that you're standing by the seashore watching the breakers roll in. Each builds height and force as it approaches the shore. Then, as it drags over the bottom, it loses energy before crashing on the beach.
That buildup and subsequent loss of energy could serve as a metaphor for wave-based picking, say some critics of the popular order-picking technique. Early in each wave, activity can be frenetic as order pickers in zones around the distribution center pick goods for batched orders. Then toward the end of the wave, activity and productivity fall off as some order pickers finish ahead of others.
To avoid these productivity losses and increase throughput, some DCs are shifting to waveless picking, also called continuous-flow picking or dynamic-wave processing. The principal difference between waveless and wave-based, or fixed-wave, processing is the way tasks are assigned and controlled. In waveless or continuous-flow processing, new orders are continually added to the work flow with no pauses between batches. In wave processing or fixed-wave picking, by contrast, all of the orders in a wave are completed before the orders in the next batch begin, and the number of orders in a wave is limited by the number of end points on the sorter, according to Sam Flanders of 2wmc.com Consulting Group. "That way, every time you induct something into the system, you know it has a place to fall," Flanders explains. "That is truly straightforward."
Wave planners do go to great lengths to try to ensure a balanced workload, making use of sortation systems so that each order picker finishes a wave at about the same time. But a variety of factors work against seamless execution. As a result, many DC managers build expensive buffers to ensure that work continues smoothly, and they depend on the time between waves to get back in sync.
Waveless picking, however, makes use of intelligent warehouse control systems (WCS) that can perform dynamic workload balancing, adjusting work flow to changing circumstances. This ability to juggle flows in real time makes continuous-flow picking possible. (For more on intelligent WCS, see "WCS learn to think for themselves," DC VELOCITY, April 2007.) By using this technology, managers avoid wasting energy in planning and executing waves and improve DC productivity substantially. In fact, picking productivity can increase by as much as 20 percent and throughput capacity by up to 35 percent by switching from waves to waveless processing, according to Fortna Inc., a supply chain consultancy and systems integrator.
These factors have won over Fortna's director of optimizing technology, Arturo Hinojosa, who has become a vocal advocate of waveless picking. He argues that wave-based order processing is a relic of paper-based picking systems and that waveless picking is, well, the wave of the future.
Remove waves, remove inefficiency
Inefficiencies in wave-based processes result from the way the work is segmented; new orders are added only at the beginning of each wave rather than dynamically as orders in the current batch are completed. "The problem is that as the wave nears completion, many of the orders are already complete, but because with a fixed wave you have to wait to complete all the orders, you are not utilizing the sorter to its maximum efficiency," says Flanders. "Where you lose productivity is in the close-out." A waveless process, on the other hand, keeps adding new orders into the work flow as individual orders in the current batch are completed.
Further, with wave-based picking, unexpected occurrences in one part of the DC—say, a stock-out—can delay the entire wave and every order in it. Waveless processing, however, is more adaptable, according to Hinojosa. "These systems bail you out if slotting or other things are not perfect. It helps if it's perfect," he says, "but it is not necessary."
To illustrate the differences, Flanders cites the example of a sorter with 200 destinations. In a fixed-wave operation, all 200 orders in a system would have to be completed before more are added. "With a dynamic wave or continuous flow, you don't have to pick all 200," he says. "When an order is complete, a light comes on that says that order is complete, and you can push that out and bring in a new tote or carton for another order."
Efficiency is also improved because pickers aren't required to return to the start point whenever orders are added. Instead, they continually move through their assigned zones. In fact, for pickers directed by voice, radio-frequency, or pick-to-light systems, the completion and addition of orders is transparent, says Hinojosa. "Nobody has to worry about which wave you are working on," he says. "Wave integrity goes away. Everyone works as fast and hard as they can. The picker does not know if he is working on an old order or on an order just recently added to his tasks, and he does not need to know. There are no wave transitions," he says. "You are always picking at the crest of the wave."
Waveless wipes out costly buffers
Not only can fixed-wave systems be inefficient, they can also drive up costs by forcing companies to build buffers. Hinojosa explains that when workers in one zone finish a wave ahead of other zones, workers in that zone may be directed to start picking for the next wave rather than remain idle. Those goods often move to a buffer conveyor, where they are held until shipping is ready for the next wave. "I've been to a facility with a $6 million buffer," he reports. "And these are supposed to be facilities with very efficient and sophisticated wave-planning tools."
Besides being costly, buffers can create issues of their own. Hinojosa says he asked a manager at the DC with the $6 million buffer why some shipping doors were not being worked. The answer was that the DC was at the end of a wave, and that goods for those doors were mixed in the buffer with other goods for the next wave. "They were spending money to solve problems that they themselves created," Hinojosa says.
Those problems are eliminated in a waveless process, he contends. In a waveless system, he explains, every order being picked has a shipping location ready for it. "You eliminate the need for buffers," he says.
But you may need more employees. Flanders says that in fixed-wave systems, the end points, where orders drop, do not need to be continually manned. In a dynamic-wave system, however, workers must be ready to move completed orders out when finished and bring in a new carton or tote for the next order.
From wave to waveless
For these reasons, some companies have shifted or are shifting from a fixed-wave system to a waveless system. But that raises the question of how to go about making the change.
The first step, Hinojosa says, is to determine a way to keep the overall system balanced, eliminating the need to rebalance between waves. He argues that DC managers and supervisors should not try to keep work balanced by determining when to release orders to the floor. "In my mind, that works just so far," he says. "Orders are out of the control of the DC. A much better way to do this is to say 'Send us the orders in priority. When we see things start to get out of sync, we'll just move people.'"
Hinojosa does admit that this balancing act requires sophisticated software that can help supervisors make decisions in real time. "You want decisions made by the warehouse control system," he says. "It has the widest view of what is happening. The problem is that you can have a system that is too smart for its own good. The WMS [warehouse management system] still needs to tell the WCS what to pick. The role of the WCS is just the processing of those orders."
Not without its difficulties
Despite the potential advantages, Hinojosa acknowledges that few companies are considering a shift to waveless processes. "Implementation is not that simple," he says, "especially when you are working with systems that are designed for wave-based picking."
Implementing waveless picking can be especially daunting for operations that handle vast numbers of stock-keeping units (SKUs). Flanders says that moving to dynamic waves in operations with a large number of SKUs requires a significant amount of management effort. "It's like a game of solitaire," he explains. "If all the slots in the game are full, the game is over, and you lose. If you have 10,000 SKUs and 1,200 drop points, you can have a lot of SKUs on the sorter with no place to drop into. If you want to work with continuous flow, you have to be cognizant of this."
If you do have a large SKU set, it is still possible to implement a dynamic wave system, says Flanders, but it requires much greater care in planning to assure that all of the goods for each order can be handled by the sortation system. "With a large SKU set, you have to be much better about managing the way orders come in," he says.
Today's warehouse control systems can manage the release of orders to balance workloads in real time among pick lanes, the sortation devices, and the shipping lanes. The key, according to Flanders, is to develop an effective plan for inducting batches of orders into the system so that they can be completed and cleared out. Obviously, the greater the SKU count, the more difficult that becomes.
Flanders warns against trying to implement a WMS and dynamic wave processing in a DC simultaneously. "You are taking on some tall orders," he says. "Trying to do too much at the same time can result in failure."
Such difficulties can lead to resistance from DC managers and employees, acknowledges Hinojosa. "People say, 'This is wonderful, much better than what we have now. But imagine how much work it will take to change to this approach.' That's a valid concern," he says.
In these cases, the best champion for waveless processing may be the chief financial officer. "Imagine having a sorter operation, and you are in the middle of two waves. You see all the chutes empty. Everything is finished at the sorter and ready for the next wave. Go to the sorting supervisor and ask how he likes it, and he will say he thinks it's wonderful. He can start the next wave right away. Show the CFO the same picture and ask how he likes seeing all that equipment doing nothing, and the answer will be very different."
While considerable effort may be required to make the changeover, Hinojosa believes that DCs that switch to waveless picking will realize tremendous benefits. "In places where I have seen this done, if you tried to go back to the old approach, you would have a riot in the DC," he says. "The operation becomes so much simpler for everybody."
Penske said today that its facility in Channahon, Illinois, is now fully operational, and is predominantly powered by an onsite photovoltaic (PV) solar system, expected to generate roughly 80% of the building's energy needs at 200 KW capacity. Next, a Grand Rapids, Michigan, location will be also active in the coming months, and Penske's Linden, New Jersey, location is expected to go online in 2025.
And over the coming year, the Pennsylvania-based company will add seven more sites under its power purchase agreement with Sunrock Distributed Generation, retrofitting them with new PV solar systems which are expected to yield a total of roughly 600 KW of renewable energy. Those additional sites are all in California: Fresno, Hayward, La Mirada, National City, Riverside, San Diego, and San Leandro.
On average, four solar panel-powered Penske Truck Leasing facilities will generate an estimated 1-million-kilowatt hours (kWh) of renewable energy annually and will result in an emissions avoidance of 442 metric tons (MT) CO2e, which is equal to powering nearly 90 homes for one year.
"The initiative to install solar systems at our locations is a part of our company's LEED-certified facilities process," Ivet Taneva, Penske’s vice president of environmental affairs, said in a release. "Investing in solar has considerable economic impacts for our operations as well as the environmental benefits of further reducing emissions related to electricity use."
Overall, Penske Truck Leasing operates and maintains more than 437,000 vehicles and serves its customers from nearly 1,000 maintenance facilities and more than 2,500 truck rental locations across North America.
That challenge is one of the reasons that fewer shoppers overall are satisfied with their shopping experiences lately, Lincolnshire, Illinois-based Zebra said in its “17th Annual Global Shopper Study.”th Annual Global Shopper Study.” While 85% of shoppers last year were satisfied with both the in-store and online experiences, only 81% in 2024 are satisfied with the in-store experience and just 79% with online shopping.
In response, most retailers (78%) say they are investing in technology tools that can help both frontline workers and those watching operations from behind the scenes to minimize theft and loss, Zebra said.
Just 38% of retailers currently use AI-based prescriptive analytics for loss prevention, but a much larger 50% say they plan to use it in the next 1-3 years. That was followed by self-checkout cameras and sensors (45%), computer vision (46%), and RFID tags and readers (42%) that are planned for use within the next three years, specifically for loss prevention.
Those strategies could help improve the brick and mortar shopping experience, since 78% of shoppers say it’s annoying when products are locked up or secured within cases. Adding to that frustration is that it’s hard to find an associate while shopping in stores these days, according to 70% of consumers. In response, some just walk out; one in five shoppers has left a store without getting what they needed because a retail associate wasn’t available to help, an increase over the past two years.
The survey also identified additional frustrations faced by retailers and associates:
challenges with offering easy options for click-and-collect or returns, despite high shopper demand for them
the struggle to confirm current inventory and pricing
lingering labor shortages and increasing loss incidents, even as shoppers return to stores
“Many retailers are laying the groundwork to build a modern store experience,” Matt Guiste, Global Retail Technology Strategist, Zebra Technologies, said in a release. “They are investing in mobile and intelligent automation technologies to help inform operational decisions and enable associates to do the things that keep shoppers happy.”
The survey was administered online by Azure Knowledge Corporation and included 4,200 adult shoppers (age 18+), decision-makers, and associates, who replied to questions about the topics of shopper experience, device and technology usage, and delivery and fulfillment in store and online.
Supply chains are poised for accelerated adoption of mobile robots and drones as those technologies mature and companies focus on implementing artificial intelligence (AI) and automation across their logistics operations.
That’s according to data from Gartner’s Hype Cycle for Mobile Robots and Drones, released this week. The report shows that several mobile robotics technologies will mature over the next two to five years, and also identifies breakthrough and rising technologies set to have an impact further out.
Gartner’s Hype Cycle is a graphical depiction of a common pattern that arises with each new technology or innovation through five phases of maturity and adoption. Chief supply chain officers can use the research to find robotic solutions that meet their needs, according to Gartner.
Gartner, Inc.
The mobile robotic technologies set to mature over the next two to five years are: collaborative in-aisle picking robots, light-cargo delivery robots, autonomous mobile robots (AMRs) for transport, mobile robotic goods-to-person systems, and robotic cube storage systems.
“As organizations look to further improve logistic operations, support automation and augment humans in various jobs, supply chain leaders have turned to mobile robots to support their strategy,” Dwight Klappich, VP analyst and Gartner fellow with the Gartner Supply Chain practice, said in a statement announcing the findings. “Mobile robots are continuing to evolve, becoming more powerful and practical, thus paving the way for continued technology innovation.”
Technologies that are on the rise include autonomous data collection and inspection technologies, which are expected to deliver benefits over the next five to 10 years. These include solutions like indoor-flying drones, which utilize AI-enabled vision or RFID to help with time-consuming inventory management, inspection, and surveillance tasks. The technology can also alleviate safety concerns that arise in warehouses, such as workers counting inventory in hard-to-reach places.
“Automating labor-intensive tasks can provide notable benefits,” Klappich said. “With AI capabilities increasingly embedded in mobile robots and drones, the potential to function unaided and adapt to environments will make it possible to support a growing number of use cases.”
Humanoid robots—which resemble the human body in shape—are among the technologies in the breakthrough stage, meaning that they are expected to have a transformational effect on supply chains, but their mainstream adoption could take 10 years or more.
“For supply chains with high-volume and predictable processes, humanoid robots have the potential to enhance or supplement the supply chain workforce,” Klappich also said. “However, while the pace of innovation is encouraging, the industry is years away from general-purpose humanoid robots being used in more complex retail and industrial environments.”
An eight-year veteran of the Georgia company, Hakala will begin his new role on January 1, when the current CEO, Tero Peltomäki, will retire after a long and noteworthy career, continuing as a member of the board of directors, Cimcorp said.
According to Hakala, automation is an inevitable course in Cimcorp’s core sectors, and the company’s end-to-end capabilities will be crucial for clients’ success. In the past, both the tire and grocery retail industries have automated individual machines and parts of their operations. In recent years, automation has spread throughout the facilities, as companies want to be able to see their entire operation with one look, utilize analytics, optimize processes, and lead with data.
“Cimcorp has always grown by starting small in the new business segments. We’ve created one solution first, and as we’ve gained more knowledge of our clients’ challenges, we have been able to expand,” Hakala said in a release. “In every phase, we aim to bring our experience to the table and even challenge the client’s initial perspective. We are interested in what our client does and how it could be done better and more efficiently.”
Although many shoppers will
return to physical stores this holiday season, online shopping remains a driving force behind peak-season shipping challenges, especially when it comes to the last mile. Consumers still want fast, free shipping if they can get it—without any delays or disruptions to their holiday deliveries.
One disruptor that gets a lot of headlines this time of year is package theft—committed by so-called “porch pirates.” These are thieves who snatch parcels from front stairs, side porches, and driveways in neighborhoods across the country. The problem adds up to billions of dollars in stolen merchandise each year—not to mention headaches for shippers, parcel delivery companies, and, of course, consumers.
Given the scope of the problem, it’s no wonder online shoppers are worried about it—especially during holiday season. In its annual report on package theft trends, released in October, the
security-focused research and product review firm Security.org found that:
17% of Americans had a package stolen in the past three months, with the typical stolen parcel worth about $50. Some 44% said they’d had a package taken at some point in their life.
Package thieves poached more than $8 billion in merchandise over the past year.
18% of adults said they’d had a package stolen that contained a gift for someone else.
Ahead of the holiday season, 88% of adults said they were worried about theft of online purchases, with more than a quarter saying they were “extremely” or “very” concerned.
But it doesn’t have to be that way. There are some low-tech steps consumers can take to help guard against porch piracy along with some high-tech logistics-focused innovations in the pipeline that can protect deliveries in the last mile. First, some common-sense advice on avoiding package theft from the Security.org research:
Install a doorbell camera, which is a relatively low-cost deterrent.
Bring packages inside promptly or arrange to have them delivered to a secure location if no one will be at home.
Consider using click-and-collect options when possible.
If the retailer allows you to specify delivery-time windows, consider doing so to avoid having packages sit outside for extended periods.
These steps may sound basic, but they are by no means a given: Fewer than half of Americans consider the timing of deliveries, less than a third have a doorbell camera, and nearly one-fifth take no precautions to prevent package theft, according to the research.
Tech vendors are stepping up to help. One example is
Arrive AI, which develops smart mailboxes for last-mile delivery and pickup. The company says its Mailbox-as-a-Service (MaaS) platform will revolutionize the last mile by building a network of parcel-storage boxes that can be accessed by people, drones, or robots. In a nutshell: Packages are placed into a weatherproof box via drone, robot, driverless carrier, or traditional delivery method—and no one other than the rightful owner can access it.
Although the platform is still in development, the company already offers solutions for business clients looking to secure high-value deliveries and sensitive shipments. The health-care industry is one example: Arrive AI offers secure drone delivery of medical supplies, prescriptions, lab samples, and the like to hospitals and other health-care facilities. The platform provides real-time tracking, chain-of-custody controls, and theft-prevention features. Arrive is conducting short-term deployments between logistics companies and health-care partners now, according to a company spokesperson.
The MaaS solution has a pretty high cool factor. And the common-sense best practices just seem like solid advice. Maybe combining both is the key to a more secure last mile—during peak shipping season and throughout the year as well.