If you want to put satellite tracking technology to the ultimate test, what better way than to monitor four really big cannons moving more than 1,000 miles, by land, by rail and by sea?
Anyone out hiking in the Appalachian foothills near the army depot in Anniston, Ala., on Oct. 21, 2003, would have been greeted by an ominous spectacle: Four enormous Paladin howitzers (tank-like self-propelled cannons) being rolled onto trucks. But this wasn't a typical wartime mobilization; these Paladins weren't shipping out to Iraq. They were embarking on a nine-day trek, during which they would travel 1,200 miles by land, by water (via 175-foot army landing craft) and finally by rail as part of a security demonstration.
That demonstration was being staged to showcase the security capabilities of the Regional Agile Port Intermodal Distribution System (RAPID), a Defense Department offshoot that develops advanced agile high-speed movement and logistics technologies for commercial and military shippers and transporters. Each of the 58,000-pound howitzers had been outfitted with high-tech satellite tracking devices. As the Paladins moved over land from Anniston, Ala., to Charleston, S.C.; then by sea to Philadelphia, and by rail to Letterkenny Army Depot in Chambersburg, Pa., observers located miles away would be tracking their movements.
By organizing the demonstration, its sponsors, the Delaware River Maritime Enterprise Council (DRMEC) and the U.S. Maritime Administration (MARAD), were looking to answer several questions: Was it even possible to keep an eye on cargo like this every step of the journey? Would the tracking technology—in this case, five different commercially available satellite- based tracking devices—work in practice? And in particular, would the technologies stand up to the "intermodal challenge"—surviving multiple handoffs to multiple modes? "When people talk about tracking goods in transit, they don't consider that it goes through these transitional points," says Jim Galley, chief technology officer at NaviTag, maker of one of the devices tested. "So the intermodal aspects and particularly the global intermodal aspects are often an afterthought for tracking devices."
The information transmitted by the tracking devices would be plugged into both the Intelligent Road/Rail Information Server (IRRIS) system used by the U.S. Military Surface Deployment and Distribution Command, and to the RAPID RISK Alert system, a knowledge "tool" that allows crews, cargo owners and others to share real-time information and alerts with law enforcement agencies. In fact, as part of the field test, data generated during the Pennsylvania rail leg of the journey would actually be shared interactively with local law enforcement officials. Participants would have access to information regarding every point of potential hazard along this leg, such as rail bridges and grade-crossing chokepoints, as well as jurisdictions and contacts for state and municipal law enforcement, bomb technicians, emergency responders, hazardous materials teams, terrorism task forces, rail dispatch, rail police, a county emergency management agency and dispatch center, the Environmental Protection Agency and probably Grandma Moses somewhere along the way.
The implications for commercial logistics are obvious: This could have been any kind of cargo, whether a hazardous material that is sensitive by its very nature or simply freight traveling through a region under a heightened security alert. The test results would tell the industry much about both the potential for door-to-door security and the difficulty of achieving it.
A failure to communicate?
The good news was that the tracking and data technology worked, more or less (see sidebar). But that's not to say that this experiment wasn't something of an ordeal. It took mountain-moving amounts of effort to get everyone comfortably in the loop and working together—probably no surprise given the array of players involved: DRMEC, MARAD, the Pennsylvania Department of Community and Economic Development, the Pennsylvania National Guard, the Philadelphia Regional Port Authority, the Military Traffic Management Command, the Letterkenny Army Depot, the Transportation Security Administration and a long, long list of federal, state and local law enforcement agencies.
"Technology [was] not the issue," says Susan Howland, president of the Howland Group, which has acted as project manager for a number of DRMEC systems and port security initiatives, including this one. "Policies to support greater information sharing—that's the key to all this. We need a greater degree of cooperation between the Defense Department, Homeland Security and local government. It's about the willingness to share. … It's not a technology problem, it's a cultural, institutional and people problem."
Certainly there was no lack of advance planning. Innumerable meetings were held, particularly between law enforcement forces and the major stakeholders in the demonstration. Furthermore, a DRMEC team traveled the whole land route by car beforehand, and spoke to those in charge at each point of interest along the way.
All the same, there were hiccups before the shipment even began. The commercial bills of lading were not produced by the transportation office at Anniston until the trucks were actually loaded, something the operations team hadn't anticipated, and which prevented them from entering this crucial information beforehand into an integrated data system hosted by Transentric, which communicated with everyone through the RAPID and IRRIS systems.
Furthermore, the trailer numbers on the paperwork— when it was produced—didn't match what was actually on the trucks used. In two cases, the bill of lading did not match the trailer numbers with the correct Paladin numbers. Then security at Anniston didn't check the paperwork on the cargo as the trucks departed, as this would have caused a delay.
Moving along the interstate highway system from Anniston to Charleston, the truck drivers were supposed to notify Transentric via phone of their actual departure time and their arrival time at Charleston, but none of those calls were made. (Luckily, the operations team was following them and reporting in every step of the way.)
At Charleston, the bar-coded shipping labels that should have been attached to each of the Paladins back at Anniston were attached. After a 650-mile sea journey in heavy rain to Philadelphia aboard the Landing Craft Utility Runnymede, it turned out that one of the Paladins' engines wouldn't start, and it had to be towed off, causing a two-hour delay. Then there was another two-hour delay on the Pennsylvania rail leg when the Norfolk Southern folks handed the train over to the CSX crew at Lurgan, Pa., six miles from the cargo's final destination.
Lessons learned
These setbacks notwithstanding, it seems the DRMEC and many other parties learned valuable lessons from this demonstration. "What we were interested in was this advanced information sharing, where not only did you have visibility over the equipment move but, simultaneously, improved information sharing, which is so critical for homeland security and homeland defense," says Howland. "The people who needed to be aware of sensitive cargo moving through the state were aware of it, and that leads to improved security."
Perhaps the most important lesson, Howland says, was that taking existing technologies and combining them intelligently adds more value than any one new system ever could. "We were not building any new technology or gizmos or satellite systems," she says. "We focused on processes and procedures and getting people to co-operate and share the information." One of the unique aspects of the demonstration, DRMEC says, was the RAPID system's ability to integrate state and municipal law enforcement and state emergency management activities to enhance force protection in support of military operations.
Howland says she was especially interested in what happened when you combined federal-level information with local-level data, or combined information from different government entities. A good example of this was the geographical information system (GIS) information from IRRIS that was fed into the Coast Guard's data system, which helped the Coast Guard enhance the "maritime domain awareness" called for under Homeland Security measures. Information also flowed from the Coast Guard into the IRRIS system. "That enhanced it and showed how states can add capability to the Defense Department systems," Howland says.
Most importantly, the demonstration indicated what steps must be taken if increased security requirements are going to be applied to commercial transportation.
"We need to take down the wall between federal and state enforcement agencies," Howland says. "I think everyone in the commercial sector fully appreciates that the world as we know it changed after 9/11. I think they want to respond, and the technology is out there. It's just a question of knocking down these walls within the government."
mobile solutions: the dish on satellite trackers
Though the October 2003 cargo visibility demonstration wasn't designed to be a worldwide satellite technology smackdown, it nonetheless provided an opportunity to compare performance among five satellite-based real-time tracking devices. And it seems those devices sent decidedly mixed signals.
Each of the Paladin howitzers was outfitted with off-theshelf trackers made by Corp Ten of Baltimore, Md.; SRA/NAL Inc./NAL Research Corp. (SRA/NAL) of Manassas, Va.; NaviTag of Hingham, Mass.; Pole Star Space Applications of London; and WGI/ZIA Systems of Arlington, Va. Technicians then monitored the ability of each tracker to provide information during all three legs of the journey—as the cargo moved via truck from the depot in Anniston, Ala., to the Naval Weapons Station in Charleston, S.C.; via ship from the Port in Charleston to the Port of Philadelphia; and via train from Philly to the depot in Chambersburg, Pa.
All of the technologies tested use active tags, bouncing their signals off satellites in order to locate the cargo. But they used the satellites differently. Some used geosynchronous satellites (ones that rotate with the earth, staying over the same spot), others used satellites that track an orbit independent of the earth's; some used satellites closer to the earth than others. Most required clear sight of the sky in order to triangulate position between two or more satellites, which became a problem when some of the Paladins on the ship to Pennsylvania were positioned in a way such that the satellite signals were blocked.
One—the NaviTag, which can lock onto one visible satellite and then use the Doppler effect (the physical effect that makes a train horn's sound shift when it changes from coming toward you to going away from you)—was able to compensate for that. But that technology had its own problems —the time interval at which the tag sent positioning information could not be varied remotely as requested, from every 15 minutes on land to every 60 minutes at sea. Furthermore, the location information had an accuracy range of only 150 meters; and there were other issues with positioning information being relayed out of order, although DRMEC admits an information processing system would have alleviated that last problem, if only it had had time to set it up before the trial.
The others all had problems as well. The magnetic feet on the Corp Ten devices weren't strong enough to use alone to attach them to the Paladins, and additional securing arrangements had to be cobbled together. The SRA/NAL device had no anti-tamper sensor (although that could have been added). The Pole Star unit doesn't come with a battery power supply and had to be plugged into a cigarette lighter. That device also experienced lengthy, unexplained gaps in data transmissions. The WGI device kept reporting an incorrect alarm, which ran the battery down, leaving it dead until someone could come in and swap it out for a new one. It also reported some ludicrous data points (e.g., 0 latitude and 0 longitude).
The official assessment? All of the devices performed reasonably well, but not perfectly, according to DRMEC's report. "The conclusion is that there isn't a silver bullet out there— no single technology capable of meeting real-time tracking technology requirements for sensitive cargo," says William Shepard, chief operating officer of The Howland Group, which acted as project manager for the demonstration.
But that may be a bit harsh. The bottom line is that the shipment was tracked, most of the time, and pretty accurately. That represents a huge improvement over the usual black hole into which cargo disappears when it leaves the loading bay or port dock.
Actually, one company's technology did work flawlessly. Omaha, Neb.-based Transentric was given the thankless task of tying everyone's data information systems together and making sure they all spoke the same electronic language. There were some startup hurdles, of course, but in the end, Transentric met the challenge of determining the data formats being transmitted by each of the vendors and putting the information into a common format that could be accepted by the Intelligent Road/Rail Information Server (IRRIS) system.
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
Global trade will see a moderate rebound in 2025, likely growing by 3.6% in volume terms, helped by companies restocking and households renewing purchases of durable goods while reducing spending on services, according to a forecast from trade credit insurer Allianz Trade.
The end of the year for 2024 will also likely be supported by companies rushing to ship goods in anticipation of the higher tariffs likely to be imposed by the coming Trump administration, and other potential disruptions in the coming quarters, the report said.
However, that tailwind for global trade will likely shift to a headwind once the effects of a renewed but contained trade war are felt from the second half of 2025 and in full in 2026. As a result, Allianz Trade has throttled back its predictions, saying that global trade in volume will grow by 2.8% in 2025 (reduced by 0.2 percentage points vs. its previous forecast) and 2.3% in 2026 (reduced by 0.5 percentage points).
The same logic applies to Allianz Trade’s forecast for export prices in U.S. dollars, which the firm has now revised downward to predict growth reaching 2.3% in 2025 (reduced by 1.7 percentage points) and 4.1% in 2026 (reduced by 0.8 percentage points).
In the meantime, the rush to frontload imports into the U.S. is giving freight carriers an early Christmas present. According to Allianz Trade, data released last week showed Chinese exports rising by a robust 6.7% y/y in November. And imports of some consumer goods that have been threatened with a likely 25% tariff under the new Trump administration have outperformed even more, growing by nearly 20% y/y on average between July and September.