Sure they're cheaper than you are, capable of working 24/7 and getting smarter all the time. But there's no need to dust off your resume. "Intelligent" software programs still have a long way to go.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Remember that famous scene from 2001: A Space Odyssey when the supercomputer HAL seizes control of the spacecraft, systematically murdering crew members and engaging in a malicious game of cat and mouse with the sole survivor? That same theme's been explored more recently in the Matrix movies, where "thinking" machines running "intelligent" software wield power over what's left of the world with bone-chilling results. Memorable as those images may be, they're hardly an accurate depiction of the state of intelligent software. In the warehouse environment, at least, the machines are still under the control of their human overseers, and visions of a fully automated, hyper-networked supply chain remain just that—a vision.
That's not to say software developers haven't made significant strides toward creating supply chain software that mimics human intelligence. Systems already exist that monitor conditions within a distribution facility or transportation network and report on any abnormalities, or "exceptions," encountered. Someday, they may be able to provide a list of recommendations for humans to act on ... or even take corrective actions on their own.
"It's a brave new world as far as technology is concerned," says Alison Smith, senior research analyst for AMR Research. "[M]ore and more intelligence is being put into devices. We are seeing more intelligent software being embedded into sensors and controls."
Right now, however, the day when thinking machines will be able to make supply chain decisions and reduce the human workload remains far off. At this point, "intelligence" is still largely limited to sensors and controls that monitor and report two key types of information: an item's location and its status. The advantages are obvious: With access to information on an item's location within a DC (and eventually anywhere in the supply chain), a manager has a good idea of whether the product can be expected to ship on time or will be delayed. Some companies are also using transportation management systems (TMS) that can issue status alerts to a computer, pager or cell phone when an order does not make the truck. Information on an order's status provides similar advantages. If a manager is alerted that some of the components in a shipment have failed to come together at a pack station or that there's not enough inventory in a pick face to complete the next wave of orders, he or she can take steps to solve a minor problem before it escalates into a full-blown and costly crisis.
"Intelligence will help us reduce those things in the supply chain that now have more expensive fixes," says Larry Lapide, research director at the Massachusetts Institute of Technology's Center for Transportation and Logistics. Most supply chain managers currently don't have enough information to act quickly, he explains. As a form of insurance, they build up buffer inventories. And when faced with delays, they have little choice but to throw money at the problem, scheduling employees to work overtime or air freighting a shipment at considerable added expense. With good intelligence, problems can be detected earlier, and cheaper fixes made.
This type of monitoring capability has already paid off for a lucky few. Procter & Gamble, for example, recently watched its on-time performance climb after installing a TMS from LeanLogistics that's now being rolled out across its enterprise. LeanLogistics says that before the pilot, P&G, which was looking to bolster its 94-percent on-time delivery rate, chose six "events" within its delivery process to monitor for possible corrective action: Did the carrier accept the assignment? Was the trailer available on time? Did loading begin on time? Did loading complete on time? Did the trailer leave the gate on time? Did the carrier report any delays en route?
In the end, Procter & Gamble discovered that about half the delays could be traced to internal problems and the other half to its carriers, and it used what it learned to fix the problems. In short order, the company, which had gone into the pilot hoping to increase its on-time performance by 1 percentage point, actually upped performance by 3 percentage points—to 97 percent.
Is data fact?
But before software developers can get to the next level— that is, creating software that goes beyond simple monitoring—they face an enormous hurdle: gathering, sifting, correlating and analyzing mountains of data that eventually must be distributed to decision makers. As daunting as that task may sound, some experts believe programmers will receive a giant leg up from recent advances in visibility software and radio-frequency identification (RFID) technology.
RFID tags, in fact, have the potential to automate the entire data-gathering process. Even the simplest tags, the read-only models, can report on the status of products as they make their way through the supply chain—announcing to anyone with a reader when and where the item was manufactured, for example. The more sophisticated tags, those with read/write capabilities, allow users to update their information as they move through the chain, providing such valuable tracking data as where each item has been, who touched it, what value-added services have been performed and when each step in the process occurred.
Initially, the tags' information will be used inside the DC, processed through intelligent modules within warehouse and transportation management software suites. With those data, managers will be able to confirm at a glance that, say, replenishment tasks have been completed, orders picked properly, labor deployed where needed and orders shipped on time. Eventually, data from other parts of the supply chain can also be written to the tags, and then reported back to these software systems. This information will allow managers to determine the exact whereabouts of items in transit and even share the data with trading partners.
But that brings us to the next problem, what do you do with the flood of data that RFID can potentially provide? Work on that question is already under way. "Researchers are now studying ways to employ RFID," says Richard Pibernik, professor of supply chain management at the Massachusetts Institute of Technology-Zaragoza International Logistics Program in Spain. For example, Pibernik and his colleagues are looking at ways in which new technologies can provide real-time visibility into order fulfillment. This will give managers, suppliers and customers continuous access to status information throughout the order cycle. A customer who orders a plasma TV, for example, would automatically be advised at the time he places the order whether the item is in stock and if so, when he can expect it on his doorstep.
Still, even if RFID someday goes mainstream, there's no guarantee that the age of the thinking machine will follow close on its heels. The real problem has never been data gathering—Pibernik notes that the basic infrastructure for gathering location and status data already exists with bar codes. The true challenge is the analysis. "[W]e don't have the technology to process the data and filter the important information to make decisions," he says. "We lack the intelligent modules needed to extract and evaluate the data. Most companies are not ready to spend time and resources on it yet."
AMR's Smith adds that a logical next step is an integration of information gathered from sensors and controls into warehousing management and enterprise resource planning systems. But it won't happen tomorrow. "We are looking to 2008 before we see much integration with those systems," she says. "It's a very new market."
Thinking systems
Will we ever see a true "lights out" facility where machines take total charge of the distribution operation? Most experts don't think so.
First of all, machines simply still have a lot to "learn." "You need a full history to ëpopulate' the learning. Not enough companies have this history yet," says MIT's Lapide.
But even when they've learned all they need to, the machines still must be programmed to respond in a certain way whenever they encounter a situation that can be tied to their history—much the way a so-called self-regulating thermostat is programmed to signal the furnace to kick in once it detects a drop in temperature. That very simple example of a self-regulating response, however, is a far cry from actual machine "thinking," which would require millions of bits of data to be analyzed and compared to its history before determining a precise resolution.
"Once self regulation is proved to work, then we can create adapting systems with learning capabilities, but that's a long way off," says Zaragoza's Pibernik. He says it would mean developing programs that would cover every conceivable situation that could arise in the supply chain.
And it's not at all clear that such an effort would pay off. "You would not get enough value out of the system to replace human intelligence," Pibernik says. There are other obstacles as well, he adds, citing a lack of industry standards, a dearth of corporate resources, and the absence of a clear picture as to what results logisticians want to achieve through intelligence.
For those reasons, most researchers expect breakthroughs in intelligent software to be limited to specific areas and functions. "We will have supply chains that are more automated," says MIT's Lapide. "Computers will [make] some of the routine decisions, but humans will still be handling the exceptions. The software can't know everything. It can support, but not replace."
"With enough time and money, all things are possible," adds AMR's Smith. "But I don't think there will be a financial incentive to have that much automation within the next 10 years."
Autonomous forklift maker Cyngn is deploying its DriveMod Tugger model at COATS Company, the largest full-line wheel service equipment manufacturer in North America, the companies said today.
By delivering the self-driving tuggers to COATS’ 150,000+ square foot manufacturing facility in La Vergne, Tennessee, Cyngn said it would enable COATS to enhance efficiency by automating the delivery of wheel service components from its production lines.
“Cyngn’s self-driving tugger was the perfect solution to support our strategy of advancing automation and incorporating scalable technology seamlessly into our operations,” Steve Bergmeyer, Continuous Improvement and Quality Manager at COATS, said in a release. “With its high load capacity, we can concentrate on increasing our ability to manage heavier components and bulk orders, driving greater efficiency, reducing costs, and accelerating delivery timelines.”
Terms of the deal were not disclosed, but it follows another deployment of DriveMod Tuggers with electric automaker Rivian earlier this year.
Manufacturing and logistics workers are raising a red flag over workplace quality issues according to industry research released this week.
A comparative study of more than 4,000 workers from the United States, the United Kingdom, and Australia found that manufacturing and logistics workers say they have seen colleagues reduce the quality of their work and not follow processes in the workplace over the past year, with rates exceeding the overall average by 11% and 8%, respectively.
The study—the Resilience Nation report—was commissioned by UK-based regulatory and compliance software company Ideagen, and it polled workers in industries such as energy, aviation, healthcare, and financial services. The results “explore the major threats and macroeconomic factors affecting people today, providing perspectives on resilience across global landscapes,” according to the authors.
According to the study, 41% of manufacturing and logistics workers said they’d witnessed their peers hiding mistakes, and 45% said they’ve observed coworkers cutting corners due to apathy—9% above the average. The results also showed that workers are seeing colleagues take safety risks: More than a third of respondents said they’ve seen people putting themselves in physical danger at work.
The authors said growing pressure inside and outside of the workplace are to blame for the lack of diligence and resiliency on the job. Internally, workers say they are under pressure to deliver more despite reduced capacity. Among the external pressures, respondents cited the rising cost of living as the biggest problem (39%), closely followed by inflation rates, supply chain challenges, and energy prices.
“People are being asked to deliver more at work when their resilience is being challenged by economic and political headwinds,” Ideagen’s CEO Ben Dorks said in a statement announcing the findings. “Ultimately, this is having a determinantal impact on business productivity, workplace health and safety, and the quality of work produced, as well as further reducing the resilience of the nation at large.”
Respondents said they believe technology will eventually alleviate some of the stress occurring in manufacturing and logistics, however.
“People are optimistic that emerging tech and AI will ultimately lighten the load, but they’re not yet feeling the benefits,” Dorks added. “It’s a gap that now, more than ever, business leaders must look to close and support their workforce to ensure their staff remain safe and compliance needs are met across the business.”
The “2024 Year in Review” report lists the various transportation delays, freight volume restrictions, and infrastructure repair costs of a long string of events. Those disruptions include labor strikes at Canadian ports and postal sites, the U.S. East and Gulf coast port strike; hurricanes Helene, Francine, and Milton; the Francis Scott key Bridge collapse in Baltimore Harbor; the CrowdStrike cyber attack; and Red Sea missile attacks on passing cargo ships.
“While 2024 was characterized by frequent and overlapping disruptions that exposed many supply chain vulnerabilities, it was also a year of resilience,” the Project44 report said. “From labor strikes and natural disasters to geopolitical tensions, each event served as a critical learning opportunity, underscoring the necessity for robust contingency planning, effective labor relations, and durable infrastructure. As supply chains continue to evolve, the lessons learned this past year highlight the increased importance of proactive measures and collaborative efforts. These strategies are essential to fostering stability and adaptability in a world where unpredictability is becoming the norm.”
In addition to tallying the supply chain impact of those events, the report also made four broad predictions for trends in 2025 that may affect logistics operations. In Project44’s analysis, they include:
More technology and automation will be introduced into supply chains, particularly ports. This will help make operations more efficient but also increase the risk of cybersecurity attacks and service interruptions due to glitches and bugs. This could also add tensions among the labor pool and unions, who do not want jobs to be replaced with automation.
The new administration in the United States introduces a lot of uncertainty, with talks of major tariffs for numerous countries as well as talks of US freight getting preferential treatment through the Panama Canal. If these things do come to fruition, expect to see shifts in global trade patterns and sourcing.
Natural disasters will continue to become more frequent and more severe, as exhibited by the wildfires in Los Angeles and the winter storms throughout the southern states in the U.S. As a result, expect companies to invest more heavily in sustainability to mitigate climate change.
The peace treaty announced on Wednesday between Isael and Hamas in the Middle East could support increased freight volumes returning to the Suez Canal as political crisis in the area are resolved.
The French transportation visibility provider Shippeo today said it has raised $30 million in financial backing, saying the money will support its accelerated expansion across North America and APAC, while driving enhancements to its “Real-Time Transportation Visibility Platform” product.
The funding round was led by Woven Capital, Toyota’s growth fund, with participation from existing investors: Battery Ventures, Partech, NGP Capital, Bpifrance Digital Venture, LFX Venture Partners, Shift4Good and Yamaha Motor Ventures. With this round, Shippeo’s total funding exceeds $140 million.
Shippeo says it offers real-time shipment tracking across all transport modes, helping companies create sustainable, resilient supply chains. Its platform enables users to reduce logistics-related carbon emissions by making informed trade-offs between modes and carriers based on carbon footprint data.
"Global supply chains are facing unprecedented complexity, and real-time transport visibility is essential for building resilience” Prashant Bothra, Principal at Woven Capital, who is joining the Shippeo board, said in a release. “Shippeo’s platform empowers businesses to proactively address disruptions by transforming fragmented operations into streamlined, data-driven processes across all transport modes, offering precise tracking and predictive ETAs at scale—capabilities that would be resource-intensive to develop in-house. We are excited to support Shippeo’s journey to accelerate digitization while enhancing cost efficiency, planning accuracy, and customer experience across the supply chain.”
Donald Trump has been clear that he plans to hit the ground running after his inauguration on January 20, launching ambitious plans that could have significant repercussions for global supply chains.
As Mark Baxa, CSCMP president and CEO, says in the executive forward to the white paper, the incoming Trump Administration and a majority Republican congress are “poised to reshape trade policies, regulatory frameworks, and the very fabric of how we approach global commerce.”
The paper is written by import/export expert Thomas Cook, managing director for Blue Tiger International, a U.S.-based supply chain management consulting company that focuses on international trade. Cook is the former CEO of American River International in New York and Apex Global Logistics Supply Chain Operation in Los Angeles and has written 19 books on global trade.
In the paper, Cook, of course, takes a close look at tariff implications and new trade deals, emphasizing that Trump will seek revisions that will favor U.S. businesses and encourage manufacturing to return to the U.S. The paper, however, also looks beyond global trade to addresses topics such as Trump’s tougher stance on immigration and the possibility of mass deportations, greater support of Israel in the Middle East, proposals for increased energy production and mining, and intent to end the war in the Ukraine.
In general, Cook believes that many of the administration’s new policies will be beneficial to the overall economy. He does warn, however, that some policies will be disruptive and add risk and cost to global supply chains.
In light of those risks and possible disruptions, Cook’s paper offers 14 recommendations. Some of which include:
Create a team responsible for studying the changes Trump will introduce when he takes office;
Attend trade shows and make connections with vendors, suppliers, and service providers who can help you navigate those changes;
Consider becoming C-TPAT (Customs-Trade Partnership Against Terrorism) certified to help mitigate potential import/export issues;
Adopt a risk management mindset and shift from focusing on lowest cost to best value for your spend;
Increase collaboration with internal and external partners;
Expect warehousing costs to rise in the short term as companies look to bring in foreign-made goods ahead of tariffs;
Expect greater scrutiny from U.S. Customs and Border Patrol of origin statements for imports in recognition of attempts by some Chinese manufacturers to evade U.S. import policies;
Reduce dependency on China for sourcing; and
Consider manufacturing and/or sourcing in the United States.
Cook advises readers to expect a loosening up of regulations and a reduction in government under Trump. He warns that while some world leaders will look to work with Trump, others will take more of a defiant stance. As a result, companies should expect to see retaliatory tariffs and duties on exports.
Cook concludes by offering advice to the incoming administration, including being sensitive to the effect retaliatory tariffs can have on American exports, working on federal debt reduction, and considering promoting free trade zones. He also proposes an ambitious water works program through the Army Corps of Engineers.