Sure they're cheaper than you are, capable of working 24/7 and getting smarter all the time. But there's no need to dust off your resume. "Intelligent" software programs still have a long way to go.
David Maloney has been a journalist for more than 35 years and is currently the group editorial director for DC Velocity and Supply Chain Quarterly magazines. In this role, he is responsible for the editorial content of both brands of Agile Business Media. Dave joined DC Velocity in April of 2004. Prior to that, he was a senior editor for Modern Materials Handling magazine. Dave also has extensive experience as a broadcast journalist. Before writing for supply chain publications, he was a journalist, television producer and director in Pittsburgh. Dave combines a background of reporting on logistics with his video production experience to bring new opportunities to DC Velocity readers, including web videos highlighting top distribution and logistics facilities, webcasts and other cross-media projects. He continues to live and work in the Pittsburgh area.
Remember that famous scene from 2001: A Space Odyssey when the supercomputer HAL seizes control of the spacecraft, systematically murdering crew members and engaging in a malicious game of cat and mouse with the sole survivor? That same theme's been explored more recently in the Matrix movies, where "thinking" machines running "intelligent" software wield power over what's left of the world with bone-chilling results. Memorable as those images may be, they're hardly an accurate depiction of the state of intelligent software. In the warehouse environment, at least, the machines are still under the control of their human overseers, and visions of a fully automated, hyper-networked supply chain remain just that—a vision.
That's not to say software developers haven't made significant strides toward creating supply chain software that mimics human intelligence. Systems already exist that monitor conditions within a distribution facility or transportation network and report on any abnormalities, or "exceptions," encountered. Someday, they may be able to provide a list of recommendations for humans to act on ... or even take corrective actions on their own.
"It's a brave new world as far as technology is concerned," says Alison Smith, senior research analyst for AMR Research. "[M]ore and more intelligence is being put into devices. We are seeing more intelligent software being embedded into sensors and controls."
Right now, however, the day when thinking machines will be able to make supply chain decisions and reduce the human workload remains far off. At this point, "intelligence" is still largely limited to sensors and controls that monitor and report two key types of information: an item's location and its status. The advantages are obvious: With access to information on an item's location within a DC (and eventually anywhere in the supply chain), a manager has a good idea of whether the product can be expected to ship on time or will be delayed. Some companies are also using transportation management systems (TMS) that can issue status alerts to a computer, pager or cell phone when an order does not make the truck. Information on an order's status provides similar advantages. If a manager is alerted that some of the components in a shipment have failed to come together at a pack station or that there's not enough inventory in a pick face to complete the next wave of orders, he or she can take steps to solve a minor problem before it escalates into a full-blown and costly crisis.
"Intelligence will help us reduce those things in the supply chain that now have more expensive fixes," says Larry Lapide, research director at the Massachusetts Institute of Technology's Center for Transportation and Logistics. Most supply chain managers currently don't have enough information to act quickly, he explains. As a form of insurance, they build up buffer inventories. And when faced with delays, they have little choice but to throw money at the problem, scheduling employees to work overtime or air freighting a shipment at considerable added expense. With good intelligence, problems can be detected earlier, and cheaper fixes made.
This type of monitoring capability has already paid off for a lucky few. Procter & Gamble, for example, recently watched its on-time performance climb after installing a TMS from LeanLogistics that's now being rolled out across its enterprise. LeanLogistics says that before the pilot, P&G, which was looking to bolster its 94-percent on-time delivery rate, chose six "events" within its delivery process to monitor for possible corrective action: Did the carrier accept the assignment? Was the trailer available on time? Did loading begin on time? Did loading complete on time? Did the trailer leave the gate on time? Did the carrier report any delays en route?
In the end, Procter & Gamble discovered that about half the delays could be traced to internal problems and the other half to its carriers, and it used what it learned to fix the problems. In short order, the company, which had gone into the pilot hoping to increase its on-time performance by 1 percentage point, actually upped performance by 3 percentage points—to 97 percent.
Is data fact?
But before software developers can get to the next level— that is, creating software that goes beyond simple monitoring—they face an enormous hurdle: gathering, sifting, correlating and analyzing mountains of data that eventually must be distributed to decision makers. As daunting as that task may sound, some experts believe programmers will receive a giant leg up from recent advances in visibility software and radio-frequency identification (RFID) technology.
RFID tags, in fact, have the potential to automate the entire data-gathering process. Even the simplest tags, the read-only models, can report on the status of products as they make their way through the supply chain—announcing to anyone with a reader when and where the item was manufactured, for example. The more sophisticated tags, those with read/write capabilities, allow users to update their information as they move through the chain, providing such valuable tracking data as where each item has been, who touched it, what value-added services have been performed and when each step in the process occurred.
Initially, the tags' information will be used inside the DC, processed through intelligent modules within warehouse and transportation management software suites. With those data, managers will be able to confirm at a glance that, say, replenishment tasks have been completed, orders picked properly, labor deployed where needed and orders shipped on time. Eventually, data from other parts of the supply chain can also be written to the tags, and then reported back to these software systems. This information will allow managers to determine the exact whereabouts of items in transit and even share the data with trading partners.
But that brings us to the next problem, what do you do with the flood of data that RFID can potentially provide? Work on that question is already under way. "Researchers are now studying ways to employ RFID," says Richard Pibernik, professor of supply chain management at the Massachusetts Institute of Technology-Zaragoza International Logistics Program in Spain. For example, Pibernik and his colleagues are looking at ways in which new technologies can provide real-time visibility into order fulfillment. This will give managers, suppliers and customers continuous access to status information throughout the order cycle. A customer who orders a plasma TV, for example, would automatically be advised at the time he places the order whether the item is in stock and if so, when he can expect it on his doorstep.
Still, even if RFID someday goes mainstream, there's no guarantee that the age of the thinking machine will follow close on its heels. The real problem has never been data gathering—Pibernik notes that the basic infrastructure for gathering location and status data already exists with bar codes. The true challenge is the analysis. "[W]e don't have the technology to process the data and filter the important information to make decisions," he says. "We lack the intelligent modules needed to extract and evaluate the data. Most companies are not ready to spend time and resources on it yet."
AMR's Smith adds that a logical next step is an integration of information gathered from sensors and controls into warehousing management and enterprise resource planning systems. But it won't happen tomorrow. "We are looking to 2008 before we see much integration with those systems," she says. "It's a very new market."
Thinking systems
Will we ever see a true "lights out" facility where machines take total charge of the distribution operation? Most experts don't think so.
First of all, machines simply still have a lot to "learn." "You need a full history to ëpopulate' the learning. Not enough companies have this history yet," says MIT's Lapide.
But even when they've learned all they need to, the machines still must be programmed to respond in a certain way whenever they encounter a situation that can be tied to their history—much the way a so-called self-regulating thermostat is programmed to signal the furnace to kick in once it detects a drop in temperature. That very simple example of a self-regulating response, however, is a far cry from actual machine "thinking," which would require millions of bits of data to be analyzed and compared to its history before determining a precise resolution.
"Once self regulation is proved to work, then we can create adapting systems with learning capabilities, but that's a long way off," says Zaragoza's Pibernik. He says it would mean developing programs that would cover every conceivable situation that could arise in the supply chain.
And it's not at all clear that such an effort would pay off. "You would not get enough value out of the system to replace human intelligence," Pibernik says. There are other obstacles as well, he adds, citing a lack of industry standards, a dearth of corporate resources, and the absence of a clear picture as to what results logisticians want to achieve through intelligence.
For those reasons, most researchers expect breakthroughs in intelligent software to be limited to specific areas and functions. "We will have supply chains that are more automated," says MIT's Lapide. "Computers will [make] some of the routine decisions, but humans will still be handling the exceptions. The software can't know everything. It can support, but not replace."
"With enough time and money, all things are possible," adds AMR's Smith. "But I don't think there will be a financial incentive to have that much automation within the next 10 years."
Congestion on U.S. highways is costing the trucking industry big, according to research from the American Transportation Research Institute (ATRI), released today.
The group found that traffic congestion on U.S. highways added $108.8 billion in costs to the trucking industry in 2022, a record high. The information comes from ATRI’s Cost of Congestion study, which is part of the organization’s ongoing highway performance measurement research.
Total hours of congestion fell slightly compared to 2021 due to softening freight market conditions, but the cost of operating a truck increased at a much higher rate, according to the research. As a result, the overall cost of congestion increased by 15% year-over-year—a level equivalent to more than 430,000 commercial truck drivers sitting idle for one work year and an average cost of $7,588 for every registered combination truck.
The analysis also identified metropolitan delays and related impacts, showing that the top 10 most-congested states each experienced added costs of more than $8 billion. That list was led by Texas, at $9.17 billion in added costs; California, at $8.77 billion; and Florida, $8.44 billion. Rounding out the top 10 list were New York, Georgia, New Jersey, Illinois, Pennsylvania, Louisiana, and Tennessee. Combined, the top 10 states account for more than half of the trucking industry’s congestion costs nationwide—52%, according to the research.
The metro areas with the highest congestion costs include New York City, $6.68 billion; Miami, $3.2 billion; and Chicago, $3.14 billion.
ATRI’s analysis also found that the trucking industry wasted more than 6.4 billion gallons of diesel fuel in 2022 due to congestion, resulting in additional fuel costs of $32.1 billion.
ATRI used a combination of data sources, including its truck GPS database and Operational Costs study benchmarks, to calculate the impacts of trucking delays on major U.S. roadways.
There’s a photo from 1971 that John Kent, professor of supply chain management at the University of Arkansas, likes to show. It’s of a shaggy-haired 18-year-old named Glenn Cowan grinning at three-time world table tennis champion Zhuang Zedong, while holding a silk tapestry Zhuang had just given him. Cowan was a member of the U.S. table tennis team who participated in the 1971 World Table Tennis Championships in Nagoya, Japan. Story has it that one morning, he overslept and missed his bus to the tournament and had to hitch a ride with the Chinese national team and met and connected with Zhuang.
Cowan and Zhuang’s interaction led to an invitation for the U.S. team to visit China. At the time, the two countries were just beginning to emerge from a 20-year period of decidedly frosty relations, strict travel bans, and trade restrictions. The highly publicized trip signaled a willingness on both sides to renew relations and launched the term “pingpong diplomacy.”
Kent, who is a senior fellow at the George H. W. Bush Foundation for U.S.-China Relations, believes the photograph is a good reminder that some 50-odd years ago, the economies of the United States and China were not as tightly interwoven as they are today. At the time, the Nixon administration was looking to form closer political and economic ties between the two countries in hopes of reducing chances of future conflict (and to weaken alliances among Communist countries).
The signals coming out of Washington and Beijing are now, of course, much different than they were in the early 1970s. Instead of advocating for better relations, political rhetoric focuses on the need for the U.S. to “decouple” from China. Both Republicans and Democrats have warned that the U.S. economy is too dependent on goods manufactured in China. They see this dependency as a threat to economic strength, American jobs, supply chain resiliency, and national security.
Supply chain professionals, however, know that extricating ourselves from our reliance on Chinese manufacturing is easier said than done. Many pundits push for a “China + 1” strategy, where companies diversify their manufacturing and sourcing options beyond China. But in reality, that “plus one” is often a Chinese company operating in a different country or a non-Chinese manufacturer that is still heavily dependent on material or subcomponents made in China.
This is the problem when supply chain decisions are made on a global scale without input from supply chain professionals. In an article in the Arkansas Democrat-Gazette, Kent argues that, “The discussions on supply chains mainly take place between government officials who typically bring many other competing issues and agendas to the table. Corporate entities—the individuals and companies directly impacted by supply chains—tend to be under-represented in the conversation.”
Kent is a proponent of what he calls “supply chain diplomacy,” where experts from academia and industry from the U.S. and China work collaboratively to create better, more efficient global supply chains. Take, for example, the “Peace Beans” project that Kent is involved with. This project, jointly formed by Zhejiang University and the Bush China Foundation, proposes balancing supply chains by exporting soybeans from Arkansas to tofu producers in China’s Yunnan province, and, in return, importing coffee beans grown in Yunnan to coffee roasters in Arkansas. Kent believes the operation could even use the same transportation equipment.
The benefits of working collaboratively—instead of continuing to build friction in the supply chain through tariffs and adversarial relationships—are numerous, according to Kent and his colleagues. They believe it would be much better if the two major world economies worked together on issues like global inflation, climate change, and artificial intelligence.
And such relations could play a significant role in strengthening world peace, particularly in light of ongoing tensions over Taiwan. Because, as Kent writes, “The 19th-century idea that ‘When goods don’t cross borders, soldiers will’ is as true today as ever. Perhaps more so.”
Hyster-Yale Materials Handling today announced its plans to fulfill the domestic manufacturing requirements of the Build America, Buy America (BABA) Act for certain portions of its lineup of forklift trucks and container handling equipment.
That means the Greenville, North Carolina-based company now plans to expand its existing American manufacturing with a targeted set of high-capacity models, including electric options, that align with the needs of infrastructure projects subject to BABA requirements. The company’s plans include determining the optimal production location in the United States, strategically expanding sourcing agreements to meet local material requirements, and further developing electric power options for high-capacity equipment.
As a part of the 2021 Infrastructure Investment and Jobs Act, the BABA Act aims to increase the use of American-made materials in federally funded infrastructure projects across the U.S., Hyster-Yale says. It was enacted as part of a broader effort to boost domestic manufacturing and economic growth, and mandates that federal dollars allocated to infrastructure – such as roads, bridges, ports and public transit systems – must prioritize materials produced in the USA, including critical items like steel, iron and various construction materials.
Hyster-Yale’s footprint in the U.S. is spread across 10 locations, including three manufacturing facilities.
“Our leadership is fully invested in meeting the needs of businesses that require BABA-compliant material handling solutions,” Tony Salgado, Hyster-Yale’s chief operating officer, said in a release. “We are working to partner with our key domestic suppliers, as well as identifying how best to leverage our own American manufacturing footprint to deliver a competitive solution for our customers and stakeholders. But beyond mere compliance, and in line with the many areas of our business where we are evolving to better support our customers, our commitment remains steadfast. We are dedicated to delivering industry-leading standards in design, durability and performance — qualities that have become synonymous with our brands worldwide and that our customers have come to rely on and expect.”
In a separate move, the U.S. Environmental Protection Agency (EPA) also gave its approval for the state to advance its Heavy-Duty Omnibus Rule, which is crafted to significantly reduce smog-forming nitrogen oxide (NOx) emissions from new heavy-duty, diesel-powered trucks.
Both rules are intended to deliver health benefits to California citizens affected by vehicle pollution, according to the environmental group Earthjustice. If the state gets federal approval for the final steps to become law, the rules mean that cars on the road in California will largely be zero-emissions a generation from now in the 2050s, accounting for the average vehicle lifespan of vehicles with internal combustion engine (ICE) power sold before that 2035 date.
“This might read like checking a bureaucratic box, but EPA’s approval is a critical step forward in protecting our lungs from pollution and our wallets from the expenses of combustion fuels,” Paul Cort, director of Earthjustice’s Right To Zero campaign, said in a release. “The gradual shift in car sales to zero-emissions models will cut smog and household costs while growing California’s clean energy workforce. Cutting truck pollution will help clear our skies of smog. EPA should now approve the remaining authorization requests from California to allow the state to clean its air and protect its residents.”
However, the truck drivers' industry group Owner-Operator Independent Drivers Association (OOIDA) pushed back against the federal decision allowing the Omnibus Low-NOx rule to advance. "The Omnibus Low-NOx waiver for California calls into question the policymaking process under the Biden administration's EPA. Purposefully injecting uncertainty into a $588 billion American industry is bad for our economy and makes no meaningful progress towards purported environmental goals," (OOIDA) President Todd Spencer said in a release. "EPA's credibility outside of radical environmental circles would have been better served by working with regulated industries rather than ramming through last-minute special interest favors. We look forward to working with the Trump administration's EPA in good faith towards achievable environmental outcomes.”
Editor's note:This article was revised on December 18 to add reaction from OOIDA.
A Canadian startup that provides AI-powered logistics solutions has gained $5.5 million in seed funding to support its concept of creating a digital platform for global trade, according to Toronto-based Starboard.
The round was led by Eclipse, with participation from previous backers Garuda Ventures and Everywhere Ventures. The firm says it will use its new backing to expand its engineering team in Toronto and accelerate its AI-driven product development to simplify supply chain complexities.
According to Starboard, the logistics industry is under immense pressure to adapt to the growing complexity of global trade, which has hit recent hurdles such as the strike at U.S. east and gulf coast ports. That situation calls for innovative solutions to streamline operations and reduce costs for operators.
As a potential solution, Starboard offers its flagship product, which it defines as an AI-based transportation management system (TMS) and rate management system that helps mid-sized freight forwarders operate more efficiently and win more business. More broadly, Starboard says it is building the virtual infrastructure for global trade, allowing freight companies to leverage AI and machine learning to optimize operations such as processing shipments in real time, reconciling invoices, and following up on payments.
"This investment is a pivotal step in our mission to unlock the power of AI for our customers," said Sumeet Trehan, Co-Founder and CEO of Starboard. "Global trade has long been plagued by inefficiencies that drive up costs and reduce competitiveness. Our platform is designed to empower SMB freight forwarders—the backbone of more than $20 trillion in global trade and $1 trillion in logistics spend—with the tools they need to thrive in this complex ecosystem."