The argument for integrating manufacturing with supply chain functions is compelling, whether the manufacturing source is across the street, across the country, or across the ocean. But whatever the situation, we cannot afford to simply let manufacturing "happen," figuring we'll deal with the consequences later.
Art van Bodegraven was, among other roles, chief design officer for the DES Leadership Academy. He passed away on June 18, 2017. He will be greatly missed.
Once upon a time, manufacturing and logistics were independent entities, or so the story goes. The manufacturing people produced the goods, and then the transportation and distribution people took over and dealt with whatever came their way.
We use the classic fairy tale opener "once upon a time," because that was never entirely true. What was the case—and far too often, remains the case—was that business functions were walled off from one another, which impeded communication and created the kind of inefficiencies we no longer tolerate. Manufacturing is no longer an independent variable in your world, at least if that world is one in which supply chains are integrated.
The argument for integrating manufacturing with supply chain functions is compelling, whether the manufacturing source is across the street, across the country, or across the ocean. But whatever the situation, we cannot afford to simply let manufacturing "happen," figuring we'll deal with the consequences later.
So, in the spirit of this series, let's look at some fundamental issues in manufacturing.
Recent history
For the past three decades, the business world has been deluged with programs designed to transform manufacturing—and with all the attendant acronyms. All of these programs were promoted as transformative ideas that would elevate manufacturing performance to stratospheric levels. We've had just-in-time (JIT), total quality management (TQM), and kaizen; statistical process control (SPC) and single minute exchange of die (SMED); efficient consumer response (ECR) and quick response (QR); time-based manufacturing (TBM); six sigma, and more.
The concept du jour is "lean"—lean manufacturing, lean transportation, lean warehousing, lean logistics. You can't go anywhere without reading or hearing about "lean." But to be honest, we've peeked inside some lean programs and have found a remarkable resemblance to what we were doing 15 years ago, which itself wasn't all that different from programs dating back to the '70s.
Does that mean that these efforts have all been frauds? Not at all. The point is that the concepts behind organized manufacturing improvement have been around for a long time. What makes things different today—and improves the likelihood of a program's success—is the richness and robustness of modern information systems. We knew what to do, back in the day, but we were frustrated by shortfalls in data analysis capacity, by communication gaps, and by supply chains that were still inwardly focused. At the heart of things, it's all pretty simple. Today's manufacturing needs to be agile—nimble, flexible, waste-free, and in sync with ultimate demand. What it takes to make this happen is similarly straightforward. Manufacturers must drive up process reliability, build demand-based run strategies, synchronize with demand and respond to demand variation, and manage and communicate demand.
What does that mean? Let's talk about the component pieces, keeping in mind that in this limited space, this is merely an introduction to some key concepts.
Some fundamentals
From JIT to lean, nearly all of the process-improvement concepts aim at asset utilization—human assets, facility assets, material assets—and the elimination of waste, whether it's wasted time, effort, or products and materials.
In manufacturing, process reliability, for instance, has three components—uptime, dependability and first-run yield. Mastering performance in all three is crucial to achieving reliability. Reliability is expressed as a composite percentage; e.g., 90 percent uptime x 90 percent dependability x 90 percent first-run yield = 72.9 percent reliability. Looking deeper, uptime is the ratio of scheduled operation to what's available—16 hours out of 24,
five days out of 7, or 50 weeks out of 52. Adding shifts or days raises human resource and facility wear-and-tear issues, or course. But it's important to note how it fits into understanding productivity; an operation with 95-percent dependability and 99-percent first-run yield that only runs two shifts, five days a week has an overall reliability of 44.8 percent (47.6 x .95 x .99)—not a figure to impress the CEO with.
First-run yield is the ratio of good output to input, subtracting waste, spoilage, trimmings and rework. Sometimes the opportunity to improve yield is trivial; sometimes it is enormous. Most often, the process improvement initiatives are aimed at boosting capacity or improving quality. Quality improvement, generally seen as actions taken to prevent waste, almost by definition improves first-run yield, reducing such things as spoilage and rework, for instance.
Dependability is a measure of actual versus scheduled operations, the ratio of the actual hourly run rate to the capable hourly run rate. The factors influencing the ratio include breakdowns, changeovers, time spent waiting for material, and off-speed operations.
Finally, there's run speed. It may be manufacturing's dirty little secret, but run speed can deliver big-time payoffs. In an operation that was designed, engineered and installed with a nominal rate of, say, 2,400 units/hour, performance can easily deteriorate over time to three-fourths of that rate or less. Reducing setup time, by whatever name, is key to short runs and flexibility.
Manufacturing managers address those issues and others with an eye to chipping away at waste, reducing setup times, establishing consistent run rates, optimizing facility utilization, and eliminating extraneous activity.
The complete solution requires many tools and techniques. And you may find there's some value to borrowing from a number ofprograms—lean, JIT, whatever—tailoring the overall approach to the organization's specific needs and priorities (and culture).
Synchronization
But wait: that's just the foundation. As we suggested at the outset, manufacturing efficiency is just part of the business equation, not a free-standing one. Once the manufacturing house is in order, or at least well on its way, the enterprise is positioned to better synchronize production—and inventory—with customer demand. That's easier said than done, because: 1) it's not always easy to know demand; 2) demand can be skewed by unnatural factors that are nonetheless common business practices (e.g., promotions, diversions, minimums); 3) multiple supply chain touch points can filter or distort ultimate demand; and 4) events can overlay baseline demand.
Manufacturing must have decent knowledge of real demand and good visibility of events that can affect it for good or ill. With that groundwork in place, you can develop run strategies to better align manufacturing output with demand patterns. To give an admittedly oversimplified example, that might mean items in high demand are run every demand cycle and those in lesser demand every few cycles. (A cycle is the smallest capable time frame—daily is often ideal.) Adjusting the quantities of each item class based on actual consumption tightens the synchronization, and largely confines low-volume goods to small inventories. These principles apply, again, whether manufacturing is in Pekin, Ill., or in Taipei.
Demand communication is key to making all this happen. It's essential to adjust production based on timely notice of variations in baseline demand, advance notification of events and promotions, seasonality, and event and season tracking. This requires collaborative planning, forecasting and replenishment (CPFR) tools, or something akin to them, plus point-of-sale current demand data.
Even with the best systems, demand management is an imperfect science. Our marketers and salespeople are attuned to selling, not to the supply chain. Can we ever force them to behave? Maybe someday, but not anytime soon. So, it behooves us to get the manufacturing act as together as it possibly can be. That will allow us to handle the normal crises with some grace and style, conserving our energies for the extraordinary ones.
The New York-based industrial artificial intelligence (AI) provider Augury has raised $75 million for its process optimization tools for manufacturers, in a deal that values the company at more than $1 billion, the firm said today.
According to Augury, its goal is deliver a new generation of AI solutions that provide the accuracy and reliability manufacturers need to make AI a trusted partner in every phase of the manufacturing process.
The “series F” venture capital round was led by Lightrock, with participation from several of Augury’s existing investors; Insight Partners, Eclipse, and Qumra Capital as well as Schneider Electric Ventures and Qualcomm Ventures. In addition to securing the new funding, Augury also said it has added Elan Greenberg as Chief Operating Officer.
“Augury is at the forefront of digitalizing equipment maintenance with AI-driven solutions that enhance cost efficiency, sustainability performance, and energy savings,” Ashish (Ash) Puri, Partner at Lightrock, said in a release. “Their predictive maintenance technology, boasting 99.9% failure detection accuracy and a 5-20x ROI when deployed at scale, significantly reduces downtime and energy consumption for its blue-chip clients globally, offering a compelling value proposition.”
The money supports the firm’s approach of "Hybrid Autonomous Mobile Robotics (Hybrid AMRs)," which integrate the intelligence of "Autonomous Mobile Robots (AMRs)" with the precision and structure of "Automated Guided Vehicles (AGVs)."
According to Anscer, it supports the acceleration to Industry 4.0 by ensuring that its autonomous solutions seamlessly integrate with customers’ existing infrastructures to help transform material handling and warehouse automation.
Leading the new U.S. office will be Mark Messina, who was named this week as Anscer’s Managing Director & CEO, Americas. He has been tasked with leading the firm’s expansion by bringing its automation solutions to industries such as manufacturing, logistics, retail, food & beverage, and third-party logistics (3PL).
Supply chains continue to deal with a growing volume of returns following the holiday peak season, and 2024 was no exception. Recent survey data from product information management technology company Akeneo showed that 65% of shoppers made holiday returns this year, with most reporting that their experience played a large role in their reason for doing so.
The survey—which included information from more than 1,000 U.S. consumers gathered in January—provides insight into the main reasons consumers return products, generational differences in return and online shopping behaviors, and the steadily growing influence that sustainability has on consumers.
Among the results, 62% of consumers said that having more accurate product information upfront would reduce their likelihood of making a return, and 59% said they had made a return specifically because the online product description was misleading or inaccurate.
And when it comes to making those returns, 65% of respondents said they would prefer to return in-store, if possible, followed by 22% who said they prefer to ship products back.
“This indicates that consumers are gravitating toward the most sustainable option by reducing additional shipping,” the survey authors said in a statement announcing the findings, adding that 68% of respondents said they are aware of the environmental impact of returns, and 39% said the environmental impact factors into their decision to make a return or exchange.
The authors also said that investing in the product experience and providing reliable product data can help brands reduce returns, increase loyalty, and provide the best customer experience possible alongside profitability.
When asked what products they return the most, 60% of respondents said clothing items. Sizing issues were the number one reason for those returns (58%) followed by conflicting or lack of customer reviews (35%). In addition, 34% cited misleading product images and 29% pointed to inaccurate product information online as reasons for returning items.
More than 60% of respondents said that having more reliable information would reduce the likelihood of making a return.
“Whether customers are shopping directly from a brand website or on the hundreds of e-commerce marketplaces available today [such as Amazon, Walmart, etc.] the product experience must remain consistent, complete and accurate to instill brand trust and loyalty,” the authors said.
When you get the chance to automate your distribution center, take it.
That's exactly what leaders at interior design house
Thibaut Design did when they relocated operations from two New Jersey distribution centers (DCs) into a single facility in Charlotte, North Carolina, in 2019. Moving to an "empty shell of a building," as Thibaut's Michael Fechter describes it, was the perfect time to switch from a manual picking system to an automated one—in this case, one that would be driven by voice-directed technology.
"We were 100% paper-based picking in New Jersey," Fechter, the company's vice president of distribution and technology, explained in a
case study published by Voxware last year. "We knew there was a need for automation, and when we moved to Charlotte, we wanted to implement that technology."
Fechter cites Voxware's promise of simple and easy integration, configuration, use, and training as some of the key reasons Thibaut's leaders chose the system. Since implementing the voice technology, the company has streamlined its fulfillment process and can onboard and cross-train warehouse employees in a fraction of the time it used to take back in New Jersey.
And the results speak for themselves.
"We've seen incredible gains [from a] productivity standpoint," Fechter reports. "A 50% increase from pre-implementation to today."
THE NEED FOR SPEED
Thibaut was founded in 1886 and is the oldest operating wallpaper company in the United States, according to Fechter. The company works with a global network of designers, shipping samples of wallpaper and fabrics around the world.
For the design house's warehouse associates, picking, packing, and shipping thousands of samples every day was a cumbersome, labor-intensive process—and one that was prone to inaccuracy. With its paper-based picking system, mispicks were common—Fechter cites a 2% to 5% mispick rate—which necessitated stationing an extra associate at each pack station to check that orders were accurate before they left the facility.
All that has changed since implementing Voxware's Voice Management Suite (VMS) at the Charlotte DC. The system automates the workflow and guides associates through the picking process via a headset, using voice commands. The hands-free, eyes-free solution allows workers to focus on locating and selecting the right item, with no paper-based lists to check or written instructions to follow.
Thibaut also uses the tech provider's analytics tool, VoxPilot, to monitor work progress, check orders, and keep track of incoming work—managers can see what orders are open, what's in process, and what's completed for the day, for example. And it uses VoxTempo, the system's natural language voice recognition (NLVR) solution, to streamline training. The intuitive app whittles training time down to minutes and gets associates up and working fast—and Thibaut hitting minimum productivity targets within hours, according to Fechter.
EXPECTED RESULTS REALIZED
Key benefits of the project include a reduction in mispicks—which have dropped to zero—and the elimination of those extra quality-control measures Thibaut needed in the New Jersey DCs.
"We've gotten to the point where we don't even measure mispicks today—because there are none," Fechter said in the case study. "Having an extra person at a pack station to [check] every order before we pack [it]—that's been eliminated. Not only is the pick right the first time, but [the order] also gets packed and shipped faster than ever before."
The system has increased inventory accuracy as well. According to Fechter, it's now "well over 99.9%."
IT projects can be daunting, especially when the project involves upgrading a warehouse management system (WMS) to support an expansive network of warehousing and logistics facilities. Global third-party logistics service provider (3PL) CJ Logistics experienced this first-hand recently, embarking on a WMS selection process that would both upgrade performance and enhance security for its U.S. business network.
The company was operating on three different platforms across more than 35 warehouse facilities and wanted to pare that down to help standardize operations, optimize costs, and make it easier to scale the business, according to CIO Sean Moore.
Moore and his team started the WMS selection process in late 2023, working with supply chain consulting firm Alpine Supply Chain Solutions to identify challenges, needs, and goals, and then to select and implement the new WMS. Roughly a year later, the 3PL was up and running on a system from Körber Supply Chain—and planning for growth.
SECURING A NEW SOLUTION
Leaders from both companies explain that a robust WMS is crucial for a 3PL's success, as it acts as a centralized platform that allows seamless coordination of activities such as inventory management, order fulfillment, and transportation planning. The right solution allows the company to optimize warehouse operations by automating tasks, managing inventory levels, and ensuring efficient space utilization while helping to boost order processing volumes, reduce errors, and cut operational costs.
CJ Logistics had another key criterion: ensuring data security for its wide and varied array of clients, many of whom rely on the 3PL to fill e-commerce orders for consumers. Those clients wanted assurance that consumers' personally identifying information—including names, addresses, and phone numbers—was protected against cybersecurity breeches when flowing through the 3PL's system. For CJ Logistics, that meant finding a WMS provider whose software was certified to the appropriate security standards.
"That's becoming [an assurance] that our customers want to see," Moore explains, adding that many customers wanted to know that CJ Logistics' systems were SOC 2 compliant, meaning they had met a standard developed by the American Institute of CPAs for protecting sensitive customer data from unauthorized access, security incidents, and other vulnerabilities. "Everybody wants that level of security. So you want to make sure the system is secure … and not susceptible to ransomware.
"It was a critical requirement for us."
That security requirement was a key consideration during all phases of the WMS selection process, according to Michael Wohlwend, managing principal at Alpine Supply Chain Solutions.
"It was in the RFP [request for proposal], then in demo, [and] then once we got to the vendor of choice, we had a deep-dive discovery call to understand what [security] they have in place and their plan moving forward," he explains.
Ultimately, CJ Logistics implemented Körber's Warehouse Advantage, a cloud-based system designed for multiclient operations that supports all of the 3PL's needs, including its security requirements.
GOING LIVE
When it came time to implement the software, Moore and his team chose to start with a brand-new cold chain facility that the 3PL was building in Gainesville, Georgia. The 270,000-square-foot facility opened this past November and immediately went live running on the Körber WMS.
Moore and Wohlwend explain that both the nature of the cold chain business and the greenfield construction made the facility the perfect place to launch the new software: CJ Logistics would be adding customers at a staggered rate, expanding its cold storage presence in the Southeast and capitalizing on the location's proximity to major highways and railways. The facility is also adjacent to the future Northeast Georgia Inland Port, which will provide a direct link to the Port of Savannah.
"We signed a 15-year lease for the building," Moore says. "When you sign a long-term lease … you want your future-state software in place. That was one of the key [reasons] we started there.
"Also, this facility was going to bring on one customer after another at a metered rate. So [there was] some risk reduction as well."
Wohlwend adds: "The facility plus risk reduction plus the new business [element]—all made it a good starting point."
The early benefits of the WMS include ease of use and easy onboarding of clients, according to Moore, who says the plan is to convert additional CJ Logistics facilities to the new system in 2025.
"The software is very easy to use … our employees are saying they really like the user interface and that you can find information very easily," Moore says, touting the partnership with Alpine and Körber as key to making the project a success. "We are on deck to add at least four facilities at a minimum [this year]."